Abschlussbericht

F+E-Vorhaben:

Chemische Analytik zur Erzeugung atmosphärischer Plasmen mit neuartigen Elektrodensystemen

im Rahmen des Verbundvorhabens

Grundlagen zur Erzeugung flächiger Plasmen bei Atmosphärendruck mit neuartigen, steuerbaren Elektrodensystemen

Zuwendungsempfänger:

Technische Universität Braunschweig Institut für Physikalische und Theoretische Chemie Hans-Sommer-Str. 10 38106 Braunschweig Prof. Dr. K.-H. Gericke

Förderkennzeichen:

13N7338/0

Inhaltsverzeichnis

1	Zielsetzung	1					
2	Niedertemperaturplasmen bei Atmosphärendruck						
	2.1 Ein Überblick über bestehende Systeme						
	2.1.1 Barrierenentladungen	6					
	2.1.2 Koronaentladungen	8					
	2.1.3 Neue Plasmaquellen	9					
	2.2 MIKroelektroden	10 10					
	2.2.1 Skallerung des Elektrodenabstandes 2.2.2 Mikroelektroden in der Plasmatechnik und in anderen Anwendungen	10 11					
2	Experimentalle Regligation und Analytik	12					
3		IJ 12					
	3.1 KUIIZEPL	د ا 1 ۸					
	3.2 Experimentalreaktor und Haltevorrichtungen für MSE	14 1 /					
	3.2.2 Gase und Gasmanagement	 19					
	3.3 Spannungsversorgungen						
	3.3.1 Gleichspannung						
	3.3.2 Hochfrequente Wechselspannung (13.56 MHz)	22					
	3.4 Laserinduzierte Fluoreszenzspektroskopie (LIF)	24					
	3.4.1 Grundlagen der Temperaturbestimmung	24					
	3.4.2 Experimenteller Aufbau	24					
	3.5 Optische Emissionsspektroskopie (OES)	27					
	3.6 Quadrupolmassenspektrometrie (QMS)	29					
4	Ergebnisse: MSE als Plasmaguelle	32					
	4.1 Geometrie und Design	32					
	4.1.1 DC-Betrieb	33					
	4.1.2 DC - Betrieb mit Gitterelektrode	35					
	4.1.3 Betrieb im kHz - Bereich	42					
	4.1.4 HF-Betrieb (13,56 MHz)	45					
	4.2 Materialien und Fertigungstechniken	45					
	4.2.1 Elektrodenmetalle	46					
	4.2.2 Trägermaterialien	48					
	4.2.3 Hersteller und Fertigungstechniken	48					
	4.3 Geometrie- und Materialdaten	51					
	4.3.1 Typ L-MZD (50 mm × 50 mm) – Photronics MZD GmbH	51					
	4.3.2 Typ L-RH (50 mm × 50 mm) – Radeberger Hybridelektronik GmbH	52					
	4.3.3 Typ M-RBO (30 mm × 30 mm) – Robert Bosch GmbH	54					
	4.3.4 Typ S-RBO (10 mm \times 10 mm) – Robert Bosch GmbH	55					
	4.3.5 Typ M-INT (36 mm × 36 mm) und S-INT (15 mm × 15 mm) – Institut für Mikrotechnik der TU Braunschweig	57					
_							
5	Ergebnisse: MSE im Betrieb	60					
	5.1 MSE im DC-Betrieb	60					
	5.1.1 Typ L-MZD (50 mm × 50 mm) – Photronics MZD GmbH	60					

		5.1.1.2	Elektrische Betriebsparameter und Strom-Spannungs-Charakteristik	60
		5.1.1.3	Bestimmung der Neutralgastemperatur mittels LIF	61
		5.1.1.4	Lichtmikroskopaufnahmen nach Plasmabetrieb	65
		5.1.2	Typ L-RH (50 mm × 50 mm) – Radeberger Hybridelektronik GmbH	67
		5.1.3	Typ M-RBO (30 mm × 30 mm) – Robert Bosch GmbH	68
		5.1.4	Typ S-RBO (10 mm × 10 mm) – Robert Bosch GmbH	72
		5.1.4.1	Arbeitsdruckbereich	72
		5.1.4.2	Elektrische Betriebsparameter und Strom-Spannungs-Charakteristik	79
	5.2	MSE im	HF-Betrieb: Typ M-IMT (36 mm $ imes$ 36 mm) und S-IMT (15 mm $ imes$ 15 mm)) —
		Institut f	ür Mikrotechnik der TU Braunschweig	84
		5.2.1	Arbeitsdruckbereich und optisches Erscheinungsbild der Entladung	84
		5.2.2	Plasmadiagnostik mittels QMS und OES	90
		5.2.2.1	Stickoxide (NO _x)	90
		5.2.2.2	Tetrafluormethan (CF ₄)	98
	5.3	Diskuss	ion der Ergebnisse MSE im DC-Betrieb	103
	5.4	Diskuss	ion der Ergebnisse MSE im HF-Betrieb	113
	5.5.	Anwend	ungspotenzial von MSE	119
_	_			
6.	Be	eschic	htungsprozesse	. 124
	61	C - Schi	chten in MSE - Plasmen	126
	6.2	Charakt	erisierung des Beschichtungsgases mittels QMS	131

136
141
147
147
148

1 Zielsetzung

Im Rahmen dieser Arbeit wurde ein neuartiges Verfahren zur Erzeugung von homogenen und flächigen Plasmen innerhalb eines weiten Druckbereichs, insbesondere aber bei Atmosphärendruck, erforscht. Die Basis dazu bilden Mikrostrukturierte Elektrodensysteme (MSE), bei denen zwischen den einzelnen Elektrodenelementen Abstände im Mikrometerbereich realisiert sind, und zu deren Herstellung mit den modernen Methoden der Mikrostrukturtechnik eine relativ neue, aber inzwischen auch routinemäßig einsetzbare Möglichkeit zur Realisierung kleiner Elektrodenabstände genutzt wird. Der Ursprung der MSE liegt in der Kern- bzw. Teilchenphysik [OED 88], wo sie in Form von so genannten Mikrostreifen-Gasdetektoren (*engl.* microstrip gas chamber, MSGC) als ortsempfindliche Proportionalzähler Anwendung finden. Beim Detektorbetrieb kommt es jedoch immer wieder durch vereinzelt auftretende elektrische Entladungen zu chemischen Reaktionen im Gas. Diese, dort unerwünscht ablaufende Plasmachemie stellt den Ausgangspunkt der vorliegenden Arbeit dar, in der nun erstmals systematisch untersucht wurde, inwieweit MSE für plasmatechnische Anwendungen genutzt werden können bzw. inwiefern eine Optimierung für eine solche Nutzung notwendig ist.

Nicht thermische Plasmaprozesse sind in zahlreichen Anwendungsbereichen voll etabliert [ELIASSON 91]. Dazu gehören z. B. die Abgasnachbehandlung [PENETRANTE 93], die Oberflächenbehandlung von Materialien [LIEBERMAN 94] oder aber Anwendungen aus dem Bereich der Beleuchtungstechnik [JANZEN 92, Kap. 4.2]. Grundlage dieser plasmatechnischen Anwendungen ist die nicht thermische Erzeugung energiereicher Teilchen (Radikale, Ionen, angeregte Atome) als reaktives Medium in einer "kalten" Umgebung. In solchen plasmaphysikalischen und plasmachemischen Zuständen weitab vom thermischen Gleichgewicht (Nichtgleichgewichtsplasmen) besitzen die Elektronen kinetische Energien äguivalent zu einigen 10.000 K, während das neutrale Gas die Umgebungstemperatur (z. B. Raumtemperatur) beibehält. Die Erzeugung von nicht thermischen Plasmen ist auf verschiedene Art und Weise möglich, beispielsweise durch Teilchenstrahlen (Elektronen, Ionen) oder durch Laser-, Röntgen- oder γ-Strahlung (strahlerzeugte Plasmen). Die technisch bedeutendeste Methode zur Plasmaerzeugung ist jedoch die mittels äußerer elektrischer Felder, d. h. mittels elektrischer Gasentladungen (stromerzeugte Plasmen). Die Plasmaanregung kann dabei durch Gleichspannung, Wechselspannung oder hochfrequente elektromagnetische Felder bis in den Gigahertzbereich (Mikrowellen) erfolgen, wobei jeweils auch ein gepulster Betrieb möglich ist.

Den grundlegenden Prozess bei der Erzeugung einer elektrischen Gasentladung stellt die Elektronenstoßionisierung dar, d. h., Elektronen mit der Elementarladung *e* müssen durch das angelegte elektrische Feld *E* in der zur Verfügung stehenden mittleren freien Weglänge λ beschleunigt werden, um eine minimale kinetische Energie

$$E_{\rm kin} = e \cdot E \cdot \lambda > E_{\rm ex} \tag{1.1}$$

zu gewinnen, wobei E_{ex} diejenige Energie darstellt, die für eine elektronische Anregung, die Ionisierung, Fragmentierung oder Dissoziation des Gases benötigt wird. Nimmt man für E_{ex} einen konstanten Wert im Bereich einiger Elektronenvolt (1 eV = 1,602 · 10⁻¹⁹ J) an, so erfordert die Anregung von elektrischen Gasentladungen mit abnehmender freier Weglänge λ , d. h. mit steigendem Druck, eine zunehmend höhere elektrische Feldstärke *E* und damit (bei konstantem Elektrodenabstand) einen erhöhten Energieaufwand.

Ein niedriger Gasdruck dagegen bedeutet zwar eine große freie Weglänge und damit einen geringeren Energiebedarf, erfordert aber andererseits den Einsatz von Vakuumanlagen,

wodurch die Anwendung der Plasmatechnik bzw. deren Integration in andere Prozessschritte im (groß)industriellen Maßstab oftmals sehr komplex und mit enormen Investitionskosten verbunden ist. Ein Beispiel hierfür stellt die bei kontinuierlich zu fahrenden Prozessen benötigte aufwändige Schleusentechnik dar. Darüber hinaus ist mit einem niedrigen Gasdruck immer auch ein geringer Stoffumsatz verbunden. Aus wirtschaftlicher Sicht ist es deshalb von großem Vorteil, wenn die Plasmen bei Atmosphärendruck erzeugt werden können. Hierbei tritt dann jedoch ein anderer ungünstiger Umstand zu Tage: Wenn ein Elektron bei Atmosphärendruck ($\lambda \approx 10^{-5}$ cm) eine mittlere kinetische Energie von 10 eV aufnehmen soll (dies ist die Größenordnung, die zur Initiierung plasmachemischer Prozesse in etwa benötigt wird), muss das Feld *E* 10⁶ V/cm überschreiten. Nachdem sich der Abstand zwischen den Elektroden *d* in konventionellen Entladungsanordnungen in der Regel im Millimeter- bzw. Zentimeterbereich bewegt (z. B. bei Barrieren- oder Koronaentladungen), werden hier gemäß der Gleichung

$$E = U/d \tag{1.2}$$

sehr hohe Spannungen *U* (bis zu einigen 10 kV) benötigt, um die notwendigen hohen Feldstärken zu realisieren. Dies kann für einige Anwendungen (z. B. Autoabgasnachbehandlung) aus technischen oder wirtschaftlichen Gründen von Nachteil sein, da zum einen zunächst entsprechende Hochspannungsquellen zur Verfügung stehen müssen und zum anderen die Erzeugung von hohen Spannungen mit einem hohen Energieaufwand einhergeht.

Demnach stellen die für die Anwendung von nicht thermischen Plasmen üblicherweise benötigten Vakuumbedingungen und/oder sehr hohen Spannungen relativ ungünstige Voraussetzungen dar, so dass die Suche nach Möglichkeiten zur Erzeugung von Gasentladungen ohne die Einschränkung durch Vakuumbedingungen und unter Verwendung von moderaten Spannungen von großem Interesse in der Plasmatechnik ist. Die Lösung für die geschilderte Problematik ist aus plasmatechnischer Sicht recht simpel: die Verringerung des Elektrodenabstandes *d* gemäß GI. (1.2). Allerdings werden bei der Realisierung extrem kleiner Elektrodenabstände entsprechend hohe Ansprüche an die Fertigungstechnik gestellt.

Die untersuchten MSE bestehen aus einigen zehn bis zu einigen hundert parallel angeordneten Metallstreifen mit einer Breite zwischen 10 μm und 2000 μm und einer Länge von 5-30 mm, die auf einem Dielektrikum als Träger aufgebracht sind. Die für die Herstellung des elektrischen Kontaktes zur Spannungsquelle verwendeten Flächen verbinden die einzelnen Streifenelektroden so miteinander, dass schließlich zwei ineinander greifende Kammstrukturen resultieren. Abbildung 1-1 zeigt die Geometrie der Arrays schematisch. Der Elektrodenabstand bewegt sich typischerweise zwischen einigen zehn und wenigen hundert Mikrometern, so dass die zur Initiierung des elektrischen Durchbruchs benötigte Feldstärke bereits beim Anlegen von relativ moderaten Spannungen im Bereich von wenigen 100 V an die Arrays erreicht bzw. überschritten wird. Zwischen den Mikroelektroden wird im oberflächennahen Bereich problemlos eine Feldstärke von 10⁵ V/cm realisiert, während an den Elektrodenkanten bzw. -enden Werte von 10⁶ V/cm und höher erreicht werden. Auf diese Weise kann eine großflächige und homogene elektrische Gasentladung, deren Dicke weniger als 0,5 mm bis einige Millimeter beträgt, ohne zusätzliche externe Elektronenguellen, wie z. B. α -Strahler, in einem weiten Druckbereich von unter einem Millibar bis hin zum Atmosphärendruck gezündet und aufrechterhalten werden. Insofern eröffnen MSE einen Zugang zu einem weiten Bereich plasmatechnischer Anwendungen unter moderaten Betriebsbedingungen.

Abbildung 1-1. Schematische Darstellung der Mikrostrukurierten Elektrodensysteme (MSE). – Auf einem dielektrischen Träger *1* sind Metallstreifen mit Abmessungen im Mikrometerbereich in paralleler Anordnung aufgebracht. Die Streifenelektroden sind so miteinander verbunden, dass zwei ineinander greifende Kammstrukturen resultieren, wobei beim Betrieb mit Gleichspannung die breiteren Elektroden *2* als Kathoden fungieren, die schmaleren als Anoden *3*. Bei Systemen für den Betrieb mit hochfrequenter Wechselspannung sind alle Elektroden von gleicher Breite.

Die potenziellen Anwendungsmöglichkeiten der MSE sind sehr vielfältig. So ist eine Nutzung auf dem weitläufigen Gebiet der Oberflächentechnologie (Reinigen, Beschichten, Modifizieren, Ätzen) wie auch im Bereich der Lichterzeugung (z. B. als Spektrallampen) möglich. Ferner ist ein Einsatz auf dem breit gefächerten Sektor der Abgasnachbehandlung denkbar. Neben der Reduzierung der Emission umweltgefährdender bzw. umweltschädigender Verbindungen, wie sie z. B. Stickoxide (NO_x), organische Lösungsmittel (Chlorkohlenwasserstoffe, BTX-Aromaten usw.) oder auch die u. a. in Halbleiterprozessen eingesetzten klimarelevanten Perfluoralkane (CF₄, CHF₃ usw.) darstellen, ist dabei auch der Abbau von in erster Linie geruchsbelästigenden Abgaskomponenten, wie beispielsweise Ammoniak (NH₃) oder Schwefelwasserstoff (H₂S), von Interesse. Jedoch bestehen für MSE-Plasmen nicht nur Nutzungsmöglichkeiten im Bereich der Abbaureaktionen, auch ein Einsatz in der plasmachemischen Synthese ist vorstellbar, was bereits in einigen Voruntersuchungen gezeigt werden konnte. Ein Beispiel hierfür ist die Synthese von höheren Kohlenwasserstoffen wie Ethylen (H₂C = CH₂) und Acetylen (HC = CH) aus Methan (CH₄).

Die Mikrostrukturierten Elektrodensysteme werden mit Hilfe photolithographischer Techniken aus planaren Substraten (z. B. Glas) hergestellt, auf die zuvor Metallschichten aus z. B. Kupfer aufgebracht wurden. Die fertig strukturierten Systeme können nachfolgend in einem galvanotechnischen Prozess verstärkt werden, wodurch es zum einen möglich ist, Einfluss auf die elektrischen Eigenschaften der Elektroden zu nehmen, und sich zum anderen zugleich auch die Standzeiten der MSE verbessern lassen – ein für industrielle Anwendungen wesentlicher Aspekt. Zu diesem Zweck können MSE beim Betrieb mit Wechselspannung zusätzlich noch mit einer dielektrischen Schicht aus z. B. Aluminiumoxid (Al_2O_3) ausgestattet werden, welche die Metallelektroden vor einem chemischen Angriff durch korrosive Gase schützt und darüber hinaus eine Abtragung durch Sputterprozesse verhindert.

Die wesentliche Zielsetzung der durchgeführten Untersuchungen war es, erste Erkenntnisse zur möglichen Nutzung von MSE als Plasmaguelle zu gewinnen, d. h. eine grundlegende Charakterisierung der damit in verschiedenen Gasen (v. a. Helium, Argon und Stickstoff) erzeugten Entladungen vorzunehmen. Entsprechend dieser Vorgabe wurden die relevanten geometrischen und elektrischen Parameter systematisch variiert. In puncto Geometrie sind hier der Elektrodenabstand (10-400 µm), die Elektrodenbreite (10-2000 µm) und die Elektrodenform (z. B. glatte oder gewellte Kanten) zu nennen. In Bezug auf die verwendeten Materialien war die Frage zu klären, inwiefern deren elektrische Eigenschaften einen Einfluss auf die Entladung ausüben, so dass unterschiedliche Träger- (Glas, Keramik, Silizium) und Elektrodenmaterialien (Chrom, Gold, Kupfer) eingehenden Tests unterzogen wurden, wobei im Fall der Elektrodenmaterialien zusätzlich der Einfluss der Schichtdicke (0,1–100 μm) zu untersuchen war. Eine andere Fragestellung war die nach den Steuerungsmöglichkeiten der Entladung durch die äußeren elektrischen Parameter (z. B. Spannung, Strom, Frequenz), da dann die Möglichkeit besteht, durch individuell angepasste Betriebsbedingungen die Selektivität plasmachemischer Prozesse zu erhöhen und somit eine effizientere Nutzung der in das Plasma eingespeisten Energie zu erzielen. Zu diesem Zweck wurden zwei unterschiedliche Spannungsquellen für den Betrieb der MSE zum Einsatz gebracht: Gleichspannung sowie hochfrequente Wechselspannung (HF) mit einer Frequenz von 13,56 MHz. Die grundlegenden Untersuchungen liefern schließlich Parameterfelder, denen zunächst entnommen werden kann, mit welcher Array-Geometrie unter Verwendung welcher Spannungsguelle bei einem bestimmten Druck in einem bestimmten Gas eine Plasma erzeugt werden kann. Abbildung 1-2 fasst die variierten Parameter sowie die potenziellen Anwendungen für MSE noch einmal zusammen.

Abbildung 1-2. Übersicht über die variierten Parameter, die eingesetzten plasmadiagnostischen Methoden sowie potenzielle Anwendungsbereiche. – LIF: Laserinduzierte Fluoreszenzspektroskopie, OES: Optische Emissionsspektroskopie, QMS: Quadrupolmassenspektrometrie.

In Abbildung 1-2 sind ferner die eingesetzten plasmadiagnostischen Methoden zusammengestellt. Neben der Ermittlung der fundamentalen äußeren Betriebsparameter bestand ein weiteres Ziel dieser Arbeit darin, eine entsprechende Plasmadiagnostik aufzubauen, die eine Charakterisierung der im Plasma ablaufenden elementaren physikalischen und chemischen Prozesse erlaubt. Die diagnostischen Techniken tragen nicht nur zu einem grundlegenden Verständnis der mikroskopischen Abläufe im Plasma bei, auch im Hinblick auf die vorgestellten Anwendungsmöglichkeiten ist deren Einsatz, beispielsweise zur Bestimmung von Selektivitäten und Umsätzen plasmachemischer Reaktionen, unerlässlich. Zur in situ Charakterisierung der mit MSE erzeugten Plasmen wurde aus der breiten Palette der routinemäßig zur Verfügung stehenden spektroskopischen Techniken die optische Emissionsspektroskopie (OES) sowie die laserinduzierte Fluoreszenzspektroskopie (LIF) ausgewählt. Während mit Hilfe der OES nur elektronisch angeregte Spezies erfasst werden können, erlauben LIF-Messungen darüber hinaus die Charakterisierung von Atomen, Molekülen und Ionen im elektronischen Grundzustand. Diese Möglichkeit wurde in der vorliegenden Arbeit dazu genutzt, um die Temperatur des Neutralgases im Plasma zu bestimmen, indem rotationsaufgelöste Fluoreszenzanregungsspektren ausgewertet wurden. Zur Durchführung der für technische Anwendungen bedeutsamen Endproduktanalytik wurde ein Quadrupolmassenspektrometer (QMS) aufgebaut, mit welchem der Konzentrationsverlauf einzelner Spezies bis zu einem Einlassdruck von 1000 mbar online beobachtet werden konnte. Für erste quantitative Messungen, die zunächst der Optimierung des experimentellen Aufbaus dienten, wurde Stickstoffmonoxid (NO) als Modellsubstanz ausgewählt, das einerseits im Labor gut handhabbar ist und welches sich andererseits durch eine hohe umweltspezifische Relevanz auszeichnet (saurer Regen, Photosmog, Zerstörung der stratosphärischen Ozonschicht). Als Trägergas wurde aufgrund seiner im Vergleich zu anderen Gasen niedrigen Durchschlagsspannung vorwiegend Helium verwendet. Dank dieser Eigenschaft können in Helium MSE-Plasmen im HF-Betrieb (13,56 MHz) bis zu einem Druck von 1500 mbar schon mit äußerst geringen Leistungsdichten (ca. 3–6 W/cm²) stabil betrieben werden.

2 Niedertemperaturplasmen bei Atmosphärendruck

2.1 Ein Überblick über bestehende Systeme

Dieses Kapitel gibt einen kurzen Überblick über einige der heute existierenden Möglichkeiten zur Erzeugung von nicht thermischen Plasmen bei Atmosphärendruck mittels elektrischer Gasentladungen. Teilweise werden dabei Entladungsformen vorgestellt, die bereits in vielfältigen Anwendungen etabliert sind, teilweise handelt es sich um neue Entladungsanordnungen oder -bedingungen aus der Zeit seit etwa 1990. Zu den seit langem bekannten Entladungstypen, die aber dennoch insbesondere in den letzten 20 Jahren und bis heute andauernd Gegenstand intensiver Forschungsarbeiten sind, zählen vor allem Barriereentladungen – welche häufig, aber weniger treffend, auch als dielektrisch behinderte Entladungen (DBE) oder historisch als stille Entladungen bezeichnet werden – und Koronaentladungen.

2.1.1 Barriereentladungen

Barriereentladungen zeichnen sich dadurch aus, dass sich im Entladungsraum zwischen zwei metallischen Elektroden mindestens eine dielektrische Schicht befindet. Es existieren auch hier zahlreiche Ausführungsformen. Vier grundlegende Entladungsgeometrien sind schematisch in Abb. 2-1 dargestellt. Die klassische Form der Volumenanordnung zeigt Abb. 2-1 a. Hier sind zwei Plattenelektroden, von denen eine oder beide mit einem Dielektrikum bedeckt sein können, in einem Abstand von wenigen Millimetern parallel zueinander angeordnet. Im Gasraum zwischen den Platten liegt zu Beginn der Entladung ein homogenes elektrisches Feld vor, in dem sich bei Atmosphärendruck im Allgemeinen eine Vielzahl von Mikroentladungen (s. u.) ausbildet, die aus einem Entladungskanal und einer Oberflächenentladung auf dem Dielektrikum, dem so genannten Fußpunkt der Mikroentladung, bestehen. In Abbildung 2-1 b ist mit dem "Packed-Bed-Reaktor" ein Spezialfall der Volumenanordnung dargestellt, bei dem der Gasraum zusätzlich mit einem ggf. katalytisch aktiven – Dielektrikum (z. B. in Kugelform) ausgefüllt ist, auf dem sich weitere Oberflächenentladungen ausbilden können. Als potenzielles Anwendungsgebiet solcher Anordnungen wird die Abgasnachbehandlung betrachtet (z. B. [FUTAMURA 98 und 99, NOMURA 99, OGATA 99]). Abbildung 2-1 c zeigt dagegen eine Anordnung zur Erzeugung reiner Oberflächenentladungen, bei der sich die Hochspannungselektrode (HV-Elektrode) auf der einen Seite des Dielektrikums befindet, während eine rückseitige metallische Beschichtung die Gegenelektrode bildet. Die in Abbildung 2-1 d dargestellte koplanare Anordnung lässt schließlich eine Verwandtschaft zu den in dieser Arbeit untersuchten Mikrostrukturierten Elektrodensystemen erkennen. Jedoch bestehen zwei wesentliche Unterschiede im Vergleich zu den MSE: Zum einen sind die Streifenelektroden entgegengesetzter Polarität hier paarweise angeordnet und zum anderen sind sie nahe der Oberfläche in ein Dielektrikum eingebettet. Die hier gezeigte koplanare Elektrodenanordnung findet in Plasmabildschirmen Anwendung (s. u.).

Abbildung 2-1. Entladungsgeometrien für Barrierenentladungen (nach [GIBALOV 00]). – a) Volumenanordnung; b) Packed-Bed-Reaktor (Kombination aus Volumen- und Oberflächenentladung); c) Oberflächenanordnung; d) koplanare Anordnung (Kombination aus Volumen- und Oberflächenentladung). HV: Hochspannung (*engl.* high voltage).

Das Dielektrikum zwischen den Elektroden einer Barrierenanordnung verhindert die Ausbildung eines Lichtbogens, da nur ein begrenzter Verschiebungsstrom fließen kann. Barrierenentladungen setzen sich üblicherweise aus einer Vielzahl von voneinander unabhängigen Stromfilamenten ("Mikroentladungen") zusammen, die zeitlich und räumlich zufällig verteilt auftreten. Aufgrund der kurzen Dauer der Mikroentladungen von etwa 1–100 ns kommt es dabei nur zu einer geringen Erwärmung des Gases. Für eine Entladung in 1000 mbar Luft und bei einem Elektrodenabstand von 1 mm lässt sich der Filamentradius mit typischerweise 0,1 mm angeben, wobei Stromspitzen von 0,1 A gemessen und damit Stromdichten von 100–1000 A/cm² in den Mikroentladungen erreicht werden [KOGELSCHATZ 97]. Infolge dieser Eigenschaften werden die Mikroentladungen und damit Barrierenentladungen als transiente Hochdruckglimmentladungen charakterisiert. Neuere, ausführliche Darstellungen zum Thema Barrierenentladung sind z. B. [KOGELSCHATZ 97 und 01, SAMOILOVICH 97, GIBALOV 00].

Nachdem für Barrierenentladungen bei Atmosphärendruck Elektrodenabstände im Bereich einiger Millimeter üblich sind, werden zur Realisierung der notwendigen hohen elektrischen Feldstärken (bis zu 10^5 V/cm) entsprechend hohe Spannungen (ca. 10 kV) benötigt, wobei aufgrund des vorhandenen Dielektrikums nur mit (gepulster) Wechselspannung gearbeitet werden kann. Die Betriebsfrequenz liegt bei der Mehrzahl der technischen Anwendungen zwischen 500 Hz und 500 kHz. Mit mittleren Elektronenenergien zwischen 1 eV und 10 eV (Elektronendichte: 10^{14} – 10^{15} cm⁻³; Ionisierungsgrad: ca. 10^{-4}) decken Barrierenentladungen einen Großteil des Bereiches chemischer Bindungsenergien ab, so dass vielfältige Anwendungsmöglichkeiten bestehen. Die traditionelle und zugleich am weitesten verbreitete Anwendung ist dabei die Erzeugung von Ozon (O₃). Neuere Anwendungen sind großflächige Plasmabildschirme (*engl.* Plasma Display Panel, PDP), Excimer-UV-Lampen oder CO₂-Laser. Zunehmend finden Barrierenentladungen auch verstärktes Interesse auf den Gebieten der Oberflächenbehandlung sowie der Abgasnachbehandlung (z. B. DeNO_x-Prozesse). Eine ausführliche Darstellung der einzelnen Anwendungsgebiete mit einer umfangreichen Referenzsammlung ist [KOGELSCHATZ 97].

Während es sich bei den meisten industriellen Anwendungen um filamentäre Barrierenentladungen handelt, ist es vor allem in den letzten 10 Jahren verschiedenen Forschergruppen gelungen, unter bestimmten Bedingungen (Gaszusammensetzung, Oberflächeneigenschaften des Dielektrikums sowie Betriebsfrequenz) auch diffuse Barrierenentladungen in Volumenanordnungen gemäß Abbildung 2-1 a zu erzeugen. Eine aktuelle Zusammenfassung mit umfangreichen Referenzen hierzu enthält [KOGELSCHATZ 01]. Die diffuse Form der Barrierenentladung unterscheidet sich von der filamentären Form dadurch, dass keine Mirkoentladungen mehr beobachtet werden, sondern dass sich vielmehr im gesamten Raum zwischen den Elektroden eine homogene Entladung ausbildet, die in ihrem Erscheinungsbild dem einer Niederdruck-Glimmentladung ähnelt. Erste Arbeiten auf diesem Gebiet stammen aus dem Jahr 1968 [BARTNIKAS 68]. Intensiv wird es jedoch erst seit etwa 1987 erforscht, und hierbei insbesondere durch die Arbeitsgruppen um S. OKAZAKI (Tokio, Japan) [KANAZAWA 88, YOKOYAMA 90, OKAZAKI 93], F. MASSINES (Toulouse, Frankreich) [MASSINES 98A und 98B, GHERARDI 00] sowie J. R. ROTH (Konxville, Tennessee, USA) [ROTH 95, MONTIE 00]. Inzwischen konnten diffuse Barrierenentladungen bei Atmosphärendruck und teilweise mit Elektrodenabständen bis zu einigen Zentimetern z. B. in Helium, Neon, Argon, Stickstoff, Sauerstoff und Luft erzeugt werden. Für die diffuse Form der Barrierenentladung existieren mehrere Bezeichnungen, wobei "Atmospheric Pressure Glow Discharge" (APGD) (OKAZAKI et al.) und "One Atmosphere Uniform Glow Discharge Plasma" (OAUGDP) (ROTH et al.) am gebräuchlichsten sind.

2.1.2 Koronaentladungen

Koronaentladungen bilden sich aus, wenn in einem Entladungsgefäß ein stark inhomogenes elektrisches Feld vorherrscht. Ein solches Feld entsteht, wenn Elektroden einer unsymmetrischen Geometrie verwendet werden, z. B. zwischen einer Nadelspitze und einer planaren Elektrode (engl. point-to-plane) oder innerhalb eines Zylinders, der konzentrisch einen dünnen Draht umgibt (engl. wire-to-cylinder). An der stark gekrümmten Elektrode (Draht, Spitze) bildet sich aufgrund der hohen Feldstärken eine büschelartige Leuchterscheinung (Leuchtzone) aus, während der Großteil des Entladungsraumes aufgrund der absinkenden Feldstärke dunkel bleibt (Driftzone). Somit lässt sich die Koronaentladung als eine Reihenschaltung von Glimm- und Dunkelentladung betrachten. Es wird zwischen positiver und negativer Korona unterschieden, je nachdem, ob die unsymmetrische Elektrode als Anode oder als Kathode geschaltet ist. Größtenteils erfolgt der Betrieb jedoch mit Wechselspannung oder mit gepulster Gleichspannung. Die fließenden Ströme liegen typischerweise im Bereich von uA bis mA. Während in der Leuchtzone Ladungsträger beiderlei Vorzeichens auftreten, erfolgt der Stromtransport in der Driftzone entweder nur durch Elektronen (negative Korona) oder nur durch Ionen (positive Korona). Die wichtigste Anwendung der Koronaentladung ist die als elektrostatischer Staubabscheider (Elektrofilter). Des Weiteren findet man sie in Fotokopierern und Laserdruckern. Andere wichtige Anwendungsgebiete sind wiederum die O₃-Produktion, die Oberflächenbehandlung (Druckvorbehandlung von Polymerfolien) sowie der Abbau von z. B. NO_x, SO₂ oder organischen Verbindungen, wobei letzere auch in wässriger Lösung zersetzt werden können (z. B. [HOEBEN 99]). Unerwünschterweise treten Koronaentladungen an Hochspannungsfreileitungen auf, wo sie eine Hauptquelle der Leistungsverluste darstellen.

2.1.3 Neue Plasmaquellen

In den letzten Jahren sind mehrere neue Plasmaquellen entwickelt worden, welche die Erzeugung von *homogenen* nicht thermischen Plasmen bei Atmosphärendruck erlauben. Die Quellen unterscheiden sich erheblich in den Dimensionen, den verwendeten Elektrodenmaterialien und den Betriebsfrequenzen (von Gleichspannung bis in den GHz-Bereich). Neben der bereits in Kapitel 2.1.1 erwähnten diffusen Form der Barrierenentladung und der in Kapitel 2.2.2 noch ausführlicher vorzustellenden Mikrohohlkathodenentladung sollen an dieser Stelle beispielhaft der "Atmospheric Pressure Plasma Jet" (APPJ) von G. S. SELWYN *et al.* [PARK 01A und 01B] sowie der "Microbeam Plasma Generator" von S. HAYASHI *et al.* [KOINUMA 92] vorgestellt werden, die einige Gemeinsamkeiten aufweisen.

Beim APPJ handelt es sich um einen Parallelplattenreaktor ohne Dielektrikum zwischen den Elektroden, in den kapazitiv hochfrequente Wechselspannung (13,56 MHz) eingekoppelt wird. Die Größe der quadratischen Elektroden beträgt 100 cm², der Elektrodenabstand bewegt sich zwischen 0,1 cm und 1 cm. Als Arbeitsgas dient Helium (10–1000 mbar), dem geringe Anteile (0,5–3 %) reaktiver Gase (O₂, CF₄, H₂O-Dampf) zugemischt werden. Die Entladung füllt homogen das Volumen zwischen den Plattenelektroden aus, ist also nicht filamentiert. Die typische Gastemperatur wird mit 50–300 °C angegeben, es handelt sich somit um ein nicht thermisches Plasma. Der Betrieb des APPJ erfolgt mit hohen Gasdurchflussraten von etwa 50 l/min, so dass die Entladung an einer offenen Seite als Plasmastrahl aus der Anordnung austritt (vom optischen Erscheinungsbild her vergleichbar mit Schneidbrennern). Bevorzugtes Anwendungsgebiet des APPJ ist die Oberflächenbehandlung (Ätzen, Beschichten).

Auch der Microbeam Plasma Generator wird mit 13,56 MHz Hochfrequenz in einer kapazitiven Anordnung betrieben. Jedoch handelt es sich hier um eine konzentrische Anordnung einer nadelförmigen HF-Elektrode (\emptyset 1 mm, 20 mm lang) aus Edelstahl oder Wolfram und einer zylindrischen Gegenelektrode (\emptyset 2,5 mm, 15 mm lang) aus Edelstahl, zwischen denen ein Quarzrohr angeordnet ist. Im Volumen zwischen HF-Elektrode und Quarzrohr wird ein Helium-Gasstrom mit bis zu 5 % Reaktivgasanteil (z. B. CF₄, NF₃) mit einem Durchfluss von typischerweise 70 sccm so geführt, dass auch hier das Plasma als Strahl aus der Entladungsanordnung in die Umgebung austritt. Anwendungsgebiet ist wie beim APPJ die Oberflächenbehandlung (Ätzen von Silizium).

2.2 Mikroelektroden

2.2.1 Skalierung des Elektrodenabstandes

Die pd-Ähnlichkeitsbeziehungen nach Paschen können unter Verwendung von tabellierten Daten dazu herangezogen werden, einzelne, für die Plasmaerzeugung relevante Parameter herauf oder herab zu skalieren. Ausgangspunkt hierfür sind Glimmentladungen, die üblicherweise im Niederdruckbereich zwischen wenigen 10⁻² mbar und etwa 100 mbar mit Gleichspannung betrieben werden. Die Zündung der Entladung erfolgt über Elektronenlawinenprozesse nach dem TOWNSEND-Mechanismus. Dabei fließen relativ geringe Ströme zwischen typischerweise 0,1 mA und wenigen 100 mA bei Brennspannungen zwischen ca. 100 V und 1000 V. Die mittlere Elektronenenergie der Entladungen liegt ungefähr zwischen 1 eV und 5 eV [RUTSCHER 84], die Elektronendichte beträgt 10¹⁴–10¹⁵ m⁻³ [ROTH 95]. Charakteristisch für Glimmentladungen ist die Unterteilung des Entladungsraumes in unterschiedlich hell leuchtende Zonen (Glimmlichter, Dunkelräume, positive Säule), welche die verschiedenen plasmaphysikalischen Prozesse, wie beispielsweise Beschleunigung der Elektronen oder Ionisierung bzw. elektronische Anregung des Gases, repräsentieren.

Abbildung 2-2. Darstellung des Elektrodenabstands *d* in Abhängigkeit vom Druck *p* gemäß der für Glimmentladungen gültigen Ähnlichkeitsbeziehung pd = konstant.

Die Überlegung besteht nun darin, unter Zuhilfenahme des wohl bekanntesten Beispiels der Ähnlichkeitsbeziehungen

$$p_1 d_1 = p_2 d_2 = \text{konstant}$$
(2.11)

den Elektrodenabstand d_2 so zu skalieren, dass Glimmentladungen unter Beibehaltung ihrer charakteristischen Eigenschaften bei einem Gasdruck $p_2 = 1000$ mbar betrieben werden können, wobei für das Produkt p_1d_1 typische, aus dem Niederdruckbereich bekannte Werte von 3 mbar · cm bis 10 mbar · cm angesetzt werden. Das Ergebnis einer solchen *pd*-Skalierung ist in Abbildung 2-2 dargestellt. Es wird sofort deutlich, dass demnach für mittlere Drücke von 100–300 mbar Elektrodenabstände zwischen etwa 100 µm und 1000 µm notwendig sind, während der Hochdruckbereich von 500–1000 mbar mit Abständen zwischen ca. 50 µm und 200 µm zugänglich sein sollte. Beispielsweise berechnet sich *pd* bei Atmosphärendruck und einem Elektrodenabstand von 100 µm zu 10 mbar · cm (7,6 Torr · cm). Bei diesem *pd* ergibt sich für Stickstoff eine Zündspannung von etwa 1300 V, während die Edelgase Helium ($U_z = 270$ V) und Neon ($U_z = 200$ V) hier Zündspannungen von deutlich unter 300 V aufweisen. Soll dagegen in Stickstoff im PASCHEN-Minimum bei etwa 1 mbar · cm, wo U_z nur noch 250 V beträgt, eine Gasentladung bei Atmosphärendruck erzeugt werden, wäre demnach ein Elektrodenabstand von ca. 10 µm notwendig (s. Abbildung 2-2).

2.2.2 Mikroelektroden in der Plasmatechnik und in anderen Anwendungen

Infolge der inzwischen zur Routine gewordenen mikromechanischen Fertigungsmethoden spielen Elektrodendimensionen im Mikrometerbereich sowohl in der Plasmatechnik als auch in anderen Bereichen zunehmend eine wichtige Rolle. In diesem Kapitel werden einige aktuelle Forschungs- und Anwendungsgebiete zusammengefasst.

Im Bereich der Plasmatechnik sind vor allem die seit etwa 1996 auch kommerziell verfügbaren großflächigen Plasmadisplays zu nennen, in denen Mikrostreifenstrukturen in koplanarer Anordnung zu finden sind, die mit den in dieser Arbeit vorgestellten Arrays verwandt sind. (Für Übersichtsartikel zum Thema Plasmabildschirme siehe z. B. [BOEUF 97, SOBEL 91].) Die in Displays vorhandenen Strukturen werden zur Erzeugung der gewünschten UV-Strahlung ausschließlich mit Edelgasgemischen (meistens He/Xe oder He/Ne/Xe) und typischerweise im Druckbereich von 500 mbar bis Atmosphärendruck betrieben. In der Regel sind die Elektroden mit einem Dielektrikum beschichtet, so dass mit Wechselspannung gearbeitet wird.

Eine gänzlich andere Geometrie, bei der Elektrodenabstände im Mikrometerbereich realisiert sind, stellen Mikrohohlkathoden-Arrays dar. Auch Mikrohohlkathoden-Arrays weisen ein hohes Anwendungspotenzial auf – u. a. für die Displaytechnik sowie die Abgasnachbehandlung – und werden in verschiedenartigen Ausführungsformen von mehreren Arbeitsgruppen weltweit untersucht – z. B. J. G. EDEN (Urbana, IL, USA) [FRAME 97, PARK 00], K. FRANK (Erlangen) [BIBOROSCH 99], H. SCHMIDT-BÖCKING (Frankfurt/M.) [BRÄUNING-DEMIAN 00, PENACHE 00 und 01], K. H. SCHOENBACH (Norfolk, VA, USA) [SCHOENBACH 96 und 97, STARK 99A und 99B]. Prinzipiell bestehen Mikrohohlkathoden-Arrays aus einem Isolator, der als Abstandhalter dient und der auf beiden Seiten mit Metallschichten versehen ist, die als Anode bzw. Kathode fungieren. Sowohl die Dicke des Isolators als auch die der Metall-beschichtungen bewegen sich im Submillimeterbereich. In dieses Schichtsystem wird – einseitig oder beidseitig – z. B. durch Laserbohrung oder chemisches Ätzen eine Matrix von kegelförmigen bzw. zylindrischen Kanälen eingebracht, deren Abmessungen sich im Bereich einiger 10 μm bis weniger 100 μm bewegen. Mikrohohlkathodenentladungen (*engl.* microhollow cathode discharges, MHCDs) können mit Gleichspannung bzw. mit gepulster Gleichspannung bis zu einem Gasdruck von 1000 mbar (teilweise auch höher) betrieben werden.

Außerhalb der Plasmatechnik werden mit Hilfe von Mikrostreifenelektroden-Arrays erzeugte inhomogene Wechselfelder beispielsweise zur dielektrophoretischen Trennung von (elektrisch neutralen) Submikrometer-Partikeln – bis hinunter zu Makromolekülen wie z. B. DNA – eingesetzt [SUEHIRO 98, GREEN 98 und 00]. Der Ursprung der kammartigen, ineinander greifenden Mikrostrukturierten Elektrodensystemeist jedoch in der Kern- bzw. Teilchenphysik zu sehen. Hier setzte ANTON OED 1986 am Institut Laue-Langevin in Grenoble, Frankreich, erstmals photolithographische Techniken ein, um Elektrodenstrukturen herzustellen, die eine neue Art von ortsempfindlichen Detektoren darstellten. Die erste Veröffentlichung hierzu erschien dann 1988 [OED88]. Mit diesen so genannten Mikrostreifen-Gasdetektoren (engl. microstrip gas chamber, MSGC) konnte eine gegenüber den traditionell eingesetzten Vieldrahtkammern [CHARPAK 68] verbesserte Generation von Proportionalzählern mit höherer Ortsauflösung und Zählkapazität zum Nachweis von ionisierender Strahlung realisiert werden. Dieser ursprüngliche Anwendungsbereich bildet auch den Ausgangspunkt für die vorliegende Arbeit: Beim Betrieb der Detektoren kam es, bedingt durch Verunreinigungen im Gas und vereinzelt auftretende Überschläge, immer wieder zu unerwünschten plasmachemischen Reaktionen. Schließlich wurde die Idee geboren, Untersuchungen darüber anzustellen, ob ein praktischer Nutzen aus der ablaufenden Chemie, die den Detektorbetrieb äußerst beeinträchtigt, gezogen werden kann, d. h., inwieweit eine Weiterentwicklung der Mikroelektrodenstrukturen für plasmatechnische Anwendungen möglich ist.

3 Experimentelle Realisation und Analytik

3.1 Konzept

Abbildung 3-1 zeigt den für die Studien zum Einsatz von Mikrostrukturierten Elektrodensystemen als Plasmaquelle verwendeten allgemeinen experimentellen Aufbau in einer schematischen Übersicht. Die einzelnen Elemente des Aufbaus lassen sich in einige größere Einheiten zusammenfassen (in Abbildung 3-1 kursiv beschriftet). Im Zentrum befindet sich der Experimentalreaktor (Plasmareaktor), in den die Mikrostrukturierten Elektrodensysteme mit verschiedenen, speziell gefertigten Halterungen und Zusatzmodulen montiert wurden. Der Reaktor war so konstruiert, dass er je nach Art der durchzuführenden plasmadiagnostischen Messungen ohne größeren Aufwand den Erfordernissen angepasst werden konnte (z. B. Einbau von zusätzlichen Fenstern, Montage eines Photomultipliers usw.). Die einzelnen Varianten des Versuchsaufbaus finden sich in den Kapiteln 3.4 bis 3.6. Die in Abbildung 3-1 detailliert dargestellten Komponenten dienten dem Gasmanagement. Zur Evakuierung des Plasmareaktors wurde ein Turbopumpstand mit trockener Vorpumpe

Abbildung 3-1. Experimenteller Aufbau Plasmareaktor mit Gasversorgung. – MFC: Gasflussregler (*engl*. Mass Flow Controller), MKS 647B: Mehrkanalbetriebsgerät zur Steuerung der Gasflussregler, MKS 250E: Kontroll- und Steuereinheit für automatisches Ventil MKS 248A, TCP 121: Antriebselektronik für Turbopumpe, TPG 300: Anzeige- und Steuergerät für Druckmessröhren. verwendet, während beim Betrieb der Entladung allein die Vorpumpe über einen Bypass für den Durchfluss des Prozessgases sorgte. Das Gas bzw. Gasgemisch wurde nach entsprechender Sollwertvorgabe durch einen selbst aufgebauten Mischstand mit vier Gasflussreglern am Reaktoreinlass bereitgestellt, wohingegen der Prozessdruck unabhängig davon über ein automatisches Ventil am Reaktorauslass geregelt werden konnte. Die Überwachung des Drucks erfolgte je nach Bedarf (Evakuieren, Füllen des Reaktors, Plasmabetrieb) mit drei nach verschiedenen Prinzipien arbeitenden Messröhren (PIRANI, Kaltkathode, kapazitiv).

Der Plasmareaktor sowie die allgemeinen Betriebsbedingungen werden im nachfolgenden Kapitel 3.2 ausführlicher vorgestellt. Anschließend folgen in Kapitel 3.3 Ausführungen zu den Aufbauten der elektrischen Spannungsversorgung (Gleichspannung und hochfrequente Wechselspannung). In Abbildung 3-1 ist die Spannungsversorgung als weitere größere Einheit des experimentellen Aufbaus aus Gründen der Übersicht nur ganz allgemein angedeutet. Ebenso enthält Abbildung 3-1 keine Details zu den zur *in situ* Plasmadiagnostik bzw. zur online Endproduktanalytik eingesetzten analytischen Methoden. Diese Techniken werden im Einzelnen in Kapitel 3.4 (Laserinduzierte Fluoreszenzspektroskopie, LIF), Kapitel 3.5 (Optische Emissionsspektroskopie, OES) und Kapitel 3.6 (Quadrupolmassenspektrometrie, QMS) detailliert vorgestellt.

3.2 Experimentalreaktor und Gasmanagement

3.2.1 Experimentalreaktor und Haltevorrichtungen für MSE

Für alle im Rahmen dieser Arbeit durchgeführten Messungen wurde ein würfelförmiger Experimentalreaktor aus Edelstahl mit einer Kantenlänge von 10 cm verwendet. In diesen Reaktor wurden die Mikrostrukturierten Elektrodensysteme je nach Art des durchzuführenden Experiments mit verschiedenen Vorrichtungen, die im Folgenden kurz vorgestellt werden sollen, eingebaut. Da die äußerst geringen Schichtdicken der Elektroden keine konventionelle Lötverbindung erlauben, wurde der elektrische Kontakt mit der Spannungsquelle jeweils unter Verwendung von Klemm- bzw. Federkontakten hergestellt. Insbesondere für den Betrieb mit Gleichspannung musste durch eine geeignete Konstruktion der Halterungen sichergestellt werden, dass an den Kontaktstellen möglichst keine bogenähnlichen Entladungen auftreten konnten.

Abbildung 3-2. Halterung zum Einbau von Mikroelektroden-Arrays in den Experimentalreaktor für den Betrieb mit Gleichspannung. – a) Frontansicht mit montiertem Elektroden-Array; b) Rückansicht ohne Elektroden-Array; c) Seitenansicht; d) Rückansicht mit montiertem T-Stück. *1* Mikroelektroden-Array, *2* Halterung aus Hart-PVC, *3* "Fenster", *4* Kupferkontakt, *5* Kabel mit unterschiedlichen Steckverbindern, *6* Löcher zur Verschraubung mit T-Stück *7* (zur Befestigung der Halterung im Reaktor).

Für die Messungen im Gleichspannungsbetrieb wurden die Arrays mit verschiedenen aus Hart-PVC angefertigten Haltevorrichtungen im Reaktor montiert. Abbildung 3-2 zeigt eine solche Halterung. Die Gesamtabmessungen, die durch den Experimentalreaktor vorgegeben waren, betragen bei einer Materialstärke von 5–7 mm etwa 65 mm × 65 mm. In das Werkstück wurde zunächst entsprechend der aktiven Fläche der zu untersuchenden Mikrostrukturierten Elektrodensysteme ein "Fenster" gefräst. Anschließend wurde das Material so abgetragen, dass nur am äußeren Rand ein schmaler Steg verblieb. Dadurch entstand ein Rahmen, in den das Elektroden-Array passgerecht eingelegt werden konnte (vergleichbar mit einem Diarahmen). Zur Herstellung des elektrischen Kontaktes wurden zwei etwa 2 mm breite Kupferstreifen verwendet, die jeweils in einer entsprechend gefrästen Nut versenkt wurden (Abbildung 3-2 b). Die Nut sorgt dafür, dass Halterung und Elektroden-Array eng miteinander abschließen und somit das Auftreten von parasitären Entladungen in diesem Bereich sicher unterdrückt werden kann. Eine durch eine leichte Biegung der Kupferstreifen erzeugte mechanische Spannung ermöglicht es (ähnlich einer Feder), einen zuverlässigen elektrischen Kontakt zum Array herzustellen. Nachdem das Array in die Halterung eingelegt ist, wird diese mit einem T-Stück aus Aluminium verschraubt, welches dazu dient, die gesamte Vorrichtung im Plasmareaktor zu montieren (Abbildung 3-2 c, d).

Der Bereich der Elektrodenenden verlangt beim Gleichspannungsbetrieb eine erhöhte Aufmerksamkeit, um durch ein optimiertes Design die dort auftretenden Inhomogenitäten in der Verteilung der elektrischen Feldstärke zu minimieren, welche sonst, insbesondere bei höheren Drücken, leicht zu Überschlägen führen können. Im Fall der beschriebenen Haltevorrichtung wird diese Problematik dadurch umgangen, dass ein Kontakt der Elektrodenenden mit dem Arbeitsgas schlicht durch deren Verdeckung verhindert wird. Somit kommen nur Bereiche des Elektroden-Arrays mit dem Gas in Berührung, in denen eine homogene elektrische Feldstärke vorliegt (Abbildung 3-2 a). Um in diesem Bereich eine laserspektroskopische Untersuchung der Entladung (s. Kapitel 3.4) auch möglichst nahe an der Oberfläche der Arrays durchführen zu können, wurde an der Vorderseite der Halterung zusätzlich eine entsprechende Aussparung für den aufgeweiteten Laserstrahl vorgesehen (Abbildung 3-2 c).

Für den Betrieb mit hochfrequenter Wechselspannung (13,56 MHz) wurden zwei unterschiedliche Halterungen eingesetzt. Eine einfache Konstruktion (Abbildung 3-3) erlaubte den schnellen und unproblematischen Wechsel der MSE und diente dazu, neue Geometrien ersten Funktionstests unterziehen zu können oder diese hinsichtlich des Arbeitsdruckbereichs und der erforderlichen HF-Leistungsdichten zu charakterisieren. Die Halterung besteht aus einem elektrisch isolierenden Träger, dessen Abmessungen denen der für den Gleichspannungsbetrieb verwendeten Vorrichtung ähnlich sind (70 mm \times 70 mm, Dicke: 3–5 mm). Da es beim Einsatz von Hochfrequenz zu einer nicht mehr zu vernachlässigenden Wärmeentwicklung kommt – bei längerem Betrieb (> 30 min) und kleinen Gasflüssen (\leq 50 sccm) wurden Temperaturen von bis zu 125 °C gemessen –, sollten als Trägermaterial höher schmelzende Polymere wie z. B. PTFE verwendet werden. Die Montage der Halterung in den Reaktor erfolgte auch hier mit Hilfe des T-Stücks aus Aluminium, welches mit dem Träger verschraubt wurde.

Abbildung 3-3. Halterung zum Einbau von Mikroelektroden-Arrays in den Experimentalreaktor für den Betrieb mit hochfrequenter Wechselspannung (13,56 MHz). – a) Frontansicht mit montiertem Mikroelektroden-Array; b) Rückansicht; c) Seitenansicht mit montiertem MSE-Array. *1* Mikroelektroden-Array, *2* Halterung aus Hart-PVC oder PTFE, *3* Kupfer- oder Messingklemme, *4* Keramikhülse, *5* Kabel, *6* T-Stück aus Aluminium zur Befestigung der Halterung im Reaktor.

Da beim Betrieb mit Hochfrequenz keine parasitären Entladungen mit hohen Stromdichten auftreten, konnte der elektrische Kontakt über einfache, entsprechend gebogene Klemmkontakte aus Messing oder Kupfer (ca. 25 mm \times 10 mm, Dicke: 0,5 mm) realisiert werden. Dazu wurden zwei in den Träger eingebrachte Bohrungen zu Isolationszwecken beidseitig mit Keramikhülsen versehen und anschließend die Klemmen sowie die elektrischen Zuführungen mit einfachen Messingschrauben – wie in Abbildung 3-3 c gezeigt – befestigt.

Abbildung 3-4. Modul zur Durchführung quantitativer Messungen mit Mikroelektroden-Arrays. – Blick von oben in den Experimentalreaktor. Der Betrieb der MSE erfolgt mit hochfrequenter Wechselspannung (13,56 MHz). *1* Mikroelektroden-Array, *2* Modul aus Messing und Aluminium, *3* Kupfer- oder Messingklemme, *4* Keramikhülse, *5* Kabel, *6* Quarzfenster für emissionsspektroskopische Untersuchungen oder sonstige optische Analyse, *7* Stahlfeder, *8* Wasserkühlung, *9* Experimentalreaktor.

Im HF-Betrieb wurden auch quantitative Messungen mittels Quadrupolmassenspektrometrie durchgeführt (Kapitel 5.2.2). Für diese Messungen war es notwendig, eine definierte Führung des Gasstroms durch den Experimentalreaktor und damit durch die Entladung zu gewährleisten. Zu diesem Zweck wurde ein Modul konstruiert (Abb. 3-4), welches das Reaktorvolumen auf einen etwa 100 cm³ (70 mm × 70 mm × 20 mm) großen Kanal begrenzt und das nach Bedarf in den Reaktor eingesetzt werden konnte. Die Einbringung einer zusätzlichen Trennwand erlaubte es, das zur Verfügung stehende Volumen nochmals um die Hälfte auf etwa 50 cm³ zu reduzieren. Kleinere Volumina waren mit dieser Konstruktion nicht zu realisieren, da das Modul auf der bereits vorgestellten einfacheren Halterung basierte, wo die elektrische Kontaktierung bereits einen relativ großen Raumbedarf aufweist. Dieser erhöht sich durch die zusätzliche Verwendung von Federn noch einmal, welche die Beweglichkeit der Klemmkontakte erhöhen und dadurch den Einbau der MSE ins Modul erleichtern.

Der Träger, d. h. die Rückwand des Moduls, besteht hier jedoch nicht mehr aus Kunststoff, sondern ist aus Messing gefertigt, um die entstehende Wärme besser ableiten zu können, was durch eine zusätzliche Wasserkühlung der Rückwand ggf. noch unterstützt werden

kann. In der vorderen Wand des Moduls befindet sich ein Quarzfenster (\emptyset 40 mm), welches zum einen die Durchführung von emissionsspektroskopischen Untersuchungen ermöglichte (s. Kapitel 5.2.2) und zum anderen dazu genutzt wurde, Digitalfotos von der Entladung anzufertigen.

Die Zu- und Abführung des Gases bzw. des Gasgemisches erfolgte im Rahmen dieser Arbeit standardmäßig über zwei Blenden aus Aluminium mit einer rechteckigen Öffnung von 20 mm \times 2 mm, die in den Seitenwänden des Moduls montiert waren. Dabei wurde bei der Konstruktion bereits berücksichtigt, dass für zukünftige Experimente leicht Blenden mit anderen Geometrien montiert und somit Einflüsse der Gasführung entsprechend unproblematisch untersucht werden können.

3.2.2 Gase und Gasmanagement

Der Experimentalreaktor (siehe Abbildung 3-1) wurde vor jeder Messung bis auf einen Druck von $\leq 10^{-3}$ mbar evakuiert. Um eine ölfreie Umgebung sicherzustellen, wurde zur Evakuierung ein Trockenpumpstand eingesetzt, der aus einer luftgekühlten Turbo-Drag-Pumpe (Typ TMU 260, Antriebselektronik Typ TCP 121, Fa. Pfeiffer Vaccum, Saugvermögen für Stickstoff: 210 I/s) und einer Membranpumpe (Typ MD 4T, Fa. Vacuubrand, erreichbarer Enddruck ca. 2 mbar) als Vorvakuumpumpe bestand. Während beim Evakuieren des Reaktors der Druck mit einer PIRANI- (Typ TPR 010, Fa. Balzers, Messbereich: $8 \cdot 10^{-4}$ bis 1000 mbar) bzw. einer Kaltkathoden Messröhre (Typ IKR 20, Fa. Balzers, Messbereich: $5 \cdot 10^{-9}$ mbar bis $5 \cdot 10^{-3}$ mbar) gemessen wurde (beide auf Stickstoff als Gas kalibriert; verwendetes Anzeige-/Steuergerät: Typ TPG 300, Fa. Pfeiffer Vaccum), musste beim Füllen des Reaktors mit dem gewünschten Gas bzw. mit der gewünschten Gasmischung eine gasartunabhängige Messung des Drucks erfolgen, so dass hier ein kapazitiver Druckaufnehmer der Firma MKS (Baratron Typ121) mit einem Messbereich von 0,1 mbar bis 1000 mbar Anwendung fand. Die Genauigkeit des Baratrons wird von MKS mit $\pm 0,5$ % vom Messwert angegeben.

Bei allen Experimenten – mit Ausnahme der LIF-Messungen, die als statische Messungen durchgeführt wurden – wurde für den Betrieb der Entladung ein Gasfluss zwischen 20 sccm und 2000 sccm (N₂-Äquivalente) mit Hilfe von Gasflussreglern (Typ 1179A, Fa. MKS) eingestellt, sobald der gewünschte Gasdruck erreicht war. Beim Betrieb des Plasmas wurde der Gasfluss über einen Bypass allein durch die Membranvorpumpe (Saugvermögen: ca. 3 m³/h) aufrechterhalten. Die Gasflussregler waren in einem selbst aufgebauten Mischstand montiert, der in ein 19''-Industrierack eingebaut wurde. Als Verbindungen sind ausschließlich Rohre (Außendurchmesser: 6 mm) und Fittinge aus Edelstahl verwendet worden, um somit auch einen problemlosen Betrieb mit korrosiven Gasen gewährleisten zu können. Durch die Verwendung von Schnellkupplungen an den Gaszuführungen des Mischstandes war es möglich, die unterschiedlichen Betriebsgase schnell und einfach auszutauschen. Es konnten vier Gasmengen – unabhängig voneinander oder in einem festgelegten Mischungsverhältnis – geregelt werden, wobei zur gemeinsamen Steuerung der vier Regler ein mikroprozessorgesteuertes Mehrkanalbetriebsgerät (Typ 647B, Fa. MKS) verwendet wurde (s. Abb. 3-1). Die oberen Bereichsendwerte der Gasflussregler waren 50 sccm (2 Exemplare), 200 sccm und 5000 sccm N₂. Die Genauigkeit der Regler beträgt laut Herstellerangabe \pm 1 % vom oberen Bereichsendwert, während der Arbeitsbereich mit 2–100 % vom oberen Bereichsendwert angegeben wird.

Während die Regelung eines konstanten Gasflusses somit über die Gaseinlassseite möglich war (*engl.* "upstream flow control"), wurde der Prozessdruck unabhängig davon über ein am

Reaktorausgang befindliches automatisches Ventil (Typ 248A, Fa. MKS) mit einem minimalen Durchfluss von 20 sccm und einem maximalen Durchfluss von 20.000 sccm N₂ geregelt (engl. "downstream pressure control"). Dazu vergleicht eine Kontroll- und Steuereinheit (Typ 250E, Fa. MKS) den mittels des Kapazitätsmanometers gemessenen tatsächlichen Druck mit dem voreingestellten, gewünschten Druck und öffnet oder schließt das Ventil entsprechend über eine anliegende Spannung. Im verwendeten Versuchsaufbau war es durch ein zusätzliches Verbindungskabel zwischen den Einheiten 250E und 647B möglich, den Drucksollwert direkt am Betriebsgerät 647B einzugeben, so dass das gesamte Gasmanagement komfortabel über ein einziges Gerät vorgenommen werden konnte. Zur grundlegenden Charakterisierung der Gasentladungen, d. h. zur Bestimmung des Arbeitsdruckbereichs bzw. der Strom-Spannungs-Charakteristik in Abhängigkeit von den Geometrieparametern Elektrodenabstand bzw. -breite und zur Untersuchung der generellen optischen Erscheinung der Entladungen wurden hauptsächlich die beiden leichten Edelgase Helium und Neon sowie Stickstoff als molekulares Gas eingesetzt. Darüber hinaus wurden einzelne Experimente in den drei schweren Edelgasen Argon, Krypton und Xenon durchgeführt. In allen Fällen betrug die Reinheit der Gase mehr als 99,99 % (siehe Tabelle 3-1).

Gas ^{a)}	Helium	Neon	Argon	Krypton	Xenon	Stickstoff	Sauerstoff
Symbol	He	Ne	Ar	Kr	Xe	N_2	O ₂
Reinheit	4.6	5.0	4.8	4.0	4.0	5.0	5.0
Reinheit / Vol. %	> 99,996	> 99,999	> 99,998	> 99,99	> 99,99	> 99,999	> 99,999

Tabelle 3-1. Verwendete Gase.

^a Hersteller: Westfalen AG, Münster.

Zur eingehenden Untersuchung der in der Entladung ablaufenden plasmachemischen Prozesse (Aufbau- bzw. Abbaureaktionen) wurden zum einen aus den in Tabelle 3-1 angegebenen Gasen mittels des oben beschriebenen Mischstandes eigene Gasgemische hergestellt, zum anderen wurden von der Fa. Westfalen AG, Münster, fertige Prüfgasgemische bezogen (siehe Tabelle 3-2).

Tabelle 3-2. Verwendete Prüfgasgemische.

Gas ^{a)}	Stickstoffmonoxid	Stickstoffmonoxid	Tetrafluormethan (R14)
Summenformel	NO	NO (1.8)	CF ₄
Konzentration	500 Vol. ppm	500 Vol. ppm	5 Vol. %
Rest (Reinheit)	Helium (4.6)	Argon (4.6)	Stickstoff (5.0)
Reinheit / Vol. %	> 99,996	> 99,996	> 99,999

^a Hersteller: Westfalen AG, Münster.

3.3 Spannungsversorgungen

3.3.1 Gleichspannung

Abbildung 3-5 zeigt den Aufbau für den Betrieb der MSE mit Gleichspannung. Dazu wurde eine Hochspannungsquelle verwendet, welche Spannungen bis zu 5 kV bei maximal 5 mA in beiden Polaritäten liefern konnte (Typ PS 350, Fa. Stanford Research Systems). Um den Entladungsstrom zu limitieren, wurde ein Ballastwiderstand in Serie zum Elektroden-Array geschaltet. Dieser setzt sich jeweils aus sechs einzelnen Widerständen (2 W, max. 500 V) zusammen, so dass hier ein sicherer Betrieb mit einer maximalen Spannung von 3 kV und mit einer Gesamtleistung von bis zu 12 W gewährleistet war. Der resultierende Gesamtwiderstand lag im Bereich von 100 k Ω bis 2,8 M Ω . Um eine Beschädigung der Mikrostrukturierten Elektrodensysteme durch Wärmeentwicklung weitestgehend zu vermeiden, wurde an der Hochspannungsquelle ein Stromlimit von 2,0 mA eingestellt.

Zur Bestimmung der Strom-Spannungs-Charakteristik, d. h. zur Bestimmung der Brennspannung der Entladung, wurde ein Digitalmultimeter (Typ PM2424, Fa. Philips) parallel geschaltet. Der Wert des Entladungsstroms wurde direkt an der Hochspannungsversorgung abgelesen. Die Stromdurchführung in den Experimentalreaktor erfolgte über einen DN 40 ISO Kleinflansch (Anschluss außen: MHV, Anschluss innen: Lötverbindung).

Abbildung 3-5. Elektrische Versorgung (Gleichspannung).

3.3.2 Hochfrequente Wechselspannung (13,56 MHz)

Für den Betrieb der MSE mit hochfrequenter Wechselspannung wurde die u. a. in der Industrie weit verbreitete Frequenz von 13,56 MHz (λ = 22,12 m) ausgewählt, wobei die Einkopplung der elektrischen Energie in das Plasma kapazitiv erfolgt (vgl. Kapitel 2.2.1). Als Alternative zu den 13,56 MHz sind prinzipiell auch 27,12 MHz oder aber 40,68 MHz als Anregungsfrequenz denkbar, mit der Frequenz steigt jedoch in der Regel auch der Kostenaufwand. Bei den drei genannten Frequenzen handelt es sich um so genannte ISM-Frequenzen, die für industrielle (*engl.* Industrial), wissenschaftliche (Scientific) und medizinische (Medical) Anwendungen freigegeben sind (im früheren deutschen Sprachgebrauch: "postalisch zugelassen"), so dass keine Störung der Nachrichtentechnik befürchtet werden muss. Entsprechende Generatoren sind in großer Auswahl standardmäßig kommerziell verfügbar.

In Rahmen dieser Arbeit wurde ein System der Firma ENI Germany, Stuttgart, eingesetzt (siehe Abbildung 3-6). Neben dem HF-Generator (Typ ACG-3B) als zentrale Komponente setzt sich dieses im Einzelnen aus einem Anpassungsnetzwerk (Typ MW-5D) mit zugehöriger Kontroll- und Steuerelektronikeinheit, einer gesonderten Fernsteuerungseinheit (Typ RFC-5MW) hierfür und einem Modul (V/I-Probe™) zur Messung des Stroms, der Spannung und des Phasenwinkels zusammen. Letzteres wird über eine mitgelieferte Windows™-Oberfläche mittels Personalcomputer gesteuert. Zur Spannungsversorgung der Kontrolleinheit des Anpassungsnetzwerks wurde ein in der Elektronikwerkstatt des Instituts angefertigtes Gleichspannungsnetzteil (24 V / 5 A) verwendet.

Die Leistung des HF-Generators ist im Bereich von 0 W bis 300 W in 1-W-Stufen regelbar, wobei die Ausgangsimpedanz 50 Ω beträgt. Dies setzt aber voraus, dass sowohl die Impedanz der angehängten Last als auch die Impedanz des zur Verbindung benutzten Koaxialkabels 50 Ω beträgt. Ein Plasma besitzt jedoch eine von zahlreichen äußeren Parametern (z. B. Gasdruck sowie Art des Gases) abhängige, zeitlich variable und von 50 Ω verschiedene komplexe Impedanz. Aus diesem Grund wird ein so genanntes Anpassungsnetzwerk (*engl.* Matching Network, Matchbox) als Bindeglied zwischen HF-Generator und Gasentladung benötigt, dessen Aufgabe darin besteht, die ohmschen und kapazitiven Anteile des Plasmas mit der vom Generator vorgegebenen Impedanz von 50 Ω in Übereinstimmung zu bringen. Dies geschieht beim MW-5D-Netzwerk über zwei motorgesteuerte Kondensatoren und eine nicht variable Spule, die zusammen einen elektrischen Schwingkreis bilden. Die Abstimmung der Kondensatoren kann sowohl automatisch als auch manuell (0–100 %) über das RFC-5MW-Modul erfolgen. Bei einer HF-Leistung zwischen 10 W und 300 W wird der Abstimmbereich mit 10–600 Ω angegeben. Der Trennkondensator des MW-5D setzt sich aus vier parallel geschalteten Kondensatoren à 47 pF zusammen.

Abbildung 3-6. Elektrische Versorgung hochfrequente Wechselspannung (13,56 MHz).

Prinzipiell sollte die Entfernung zwischen einem Anpassungsnetzwerk und einer Plasmakammer möglichst gering gehalten werden, um Leistungsverluste zu minimieren. Im hier vorgestellten Versuchsaufbau wurden zur Herstellung der Verbindung zwischen Netzwerk und Reaktor sowie innerhalb des Reaktors jeweils zwei Kupferlitzen mit einem Querschnitt von mindestens 4 mm² verwendet. Die Gesamtlänge der Leitungen betrug dabei nicht mehr als 20–25 cm. Der Gebrauch eines Koaxialkabels zur Verbindung von Netzwerk und Plasmaquelle ist bei HF-Leistungen von max. 300 W zwar prinzipiell noch möglich, führte aber in den damit durchgeführten Versuchen vermehrt zu Instabilitäten bei der Einkopplung der HF-Leistung in das Plasma. Die Ursache für dieses instabile Verhalten ist wiederum durch die unterschiedlichen Impedanzen des Kabels (50 Ω) und des Plasmas begründet (s. o.). Zur Stromdurchführung in den Reaktor wurde eine KF-Neunfachdurchführung mit Innen- und Außenstecker (Fa. Vacom, Jena) verwendet.

Um die einzelnen Parameter einer 13,56-MHz-Hochfrequenzentladung (z. B. Strom, Spannung, tatsächlich eingekoppelte Leistung) zuverlässig bestimmen zu können, ist es erforderlich, die entsprechenden Messungen zwischen dem Anpassungsnetzwerk und der Plasmaquelle vorzunehmen. Dies wird jedoch dadurch erschwert, dass hier nicht die auf einer Impedanz von 50 Ω basierende, standardisierte Messtechnik eingesetzt werden kann (zwischen Generator und Netzwerk ist dies ohne weiteres möglich). Im Rahmen dieser Arbeit wurde deshalb zur Impedanz-Analyse der so genannte V/I-Probe™ der Fa. ENI Germany eingesetzt, welcher direkt am HF-Ausgang des Netzwerkes montiert wird.

3.4 Laserinduzierte Fluoreszenzspektroskopie (LIF)

3.4.1 Grundlagen der Temperaturbestimmung

Mit Hilfe der laserinduzierten Fluoreszenzspektroskopie (LIF) ist es möglich, Spezies im elektronischen Grundzustand zu charakterisieren, was in dieser Arbeit dazu genutzt wurde, die Temperatur der Neutralgasteilchen in der Entladung zu bestimmen. Für die Temperaturbestimmung wurde Stickstoffmonoxid (NO) als Gas ausgewählt, da dieses spektroskopisch besonders gut untersucht ist und folglich umfangreiche Literaturdaten zur Verfügung stehen. Die Messungen wurden bei Drücken im Bereich von 10 mbar bis 20 mbar durchgeführt, weil in diesem Druckbereich Effekte wie beispielsweise Quench-Prozesse oder Reabsorption nicht berücksichtigt werden müssen. Bei LIF-Messungen wird ein schmalbandiges, durchstimmbares Lasersystem eingesetzt, um spektrale Übergänge von Atomen, Molekülen oder Ionen resonant anzuregen. Die daraufhin spontan von der zu untersuchenden Spezies emittierte Fluoreszenz ist ein Maß für die Besetzung des ursprünglich angeregten Zustandes.

Die Anregung erfolgte in den durchgeführten Experimenten (Aufbau s. Kapitel 3.4.2) bei Wellenlängen zwischen 225 nm und 227 nm vom Schwingungsgrundzustand v´´= 0 des elektronischen Grundzustandes $X^2\Pi$ in den Schwingungsgrundzustand v´= 0 des ersten elektronisch angeregten Zustandes $A^2\Sigma^+$. Die beim Übergang aus dem Zustand $A^2\Sigma^+$ (v´= 0) in die Zustände $X^2\Pi$ (v´´= 1, 2, 3, 4) emittierte Fluoreszenz – die so genannten γ -Banden des NO mit Maxima bei $\lambda \approx 237$ nm, 248 nm, 259 nm und 272 nm – wurde dann für jede durchfahrene Anregungswellenlänge integral mit einem Photomultiplier detektiert. Da es notwendig war, bei den Messungen die störenden Streulichtanteile des Anregungslasers mit einem Filter (UG 5) zu unterdrücken, konnte folglich der Übergang $A^2\Sigma^+$ (v´= 0) $\rightarrow X^2\Pi$ (v´= 0) nicht detektiert werden. Als Ergebnis solcher LIF-Messungen erhält man rotationsaufgelöste Fluoreszenzspektren, die schließlich zur Bestimmung der (Rotations-) Temperatur der Neutralgasteilchen in einer Entladung herangezogen werden können. Die Auswertung der Spektren wird im Zusammenhang mit den Ergebnissen ausführlich in Kapitel 5.1.1.3 erläutert.

3.4.2 Experimenteller Aufbau

Abbildung 3-7 zeigt den für die LIF-Messungen verwendeten experimentellen Aufbau. Der Experimentalreaktor wurde so umgebaut, dass über drei Quarzfenster ein optischer Zugriff auf die Entladung möglich war. Ein- bzw. Austrittsfenster des Laserstrahls befanden sich an zwei gegenüberliegenden Seiten des Reaktors, wo sie zur Minimierung von Streulichteffekten jeweils mit Hilfe eines so genannten Auslegers aus Messing im BREWSTERwinkel montiert wurden. An die Ausleger angebrachte WOOD'sche Hörner dienten zur Unterdrückung von Rückreflexionen des Laserstrahls.

Das eingesetzte Lasersystem bestand aus einem gepulsten, schmalbandigen (Bandbreite ~ 0,1 cm⁻¹) und spektral durchstimmbaren Farbstofflaser (NARROWscan, Fa. Radiant Dyes), der von einem XeCI-Excimerlaser der Firma Lambda Physik (Typ LPX605iMC) mit einer Wellenlänge von 308 nm (Pulsdauer ca. 15 ns) gepumpt wurde. Der Excimerlaser lieferte Pumpenergien von ca. 75–110 mJ/Puls und wurde typischerweise mit einer Repetitionsrate von 5 Hz bzw. 10 Hz betrieben. Für Messungen mit NO wird Laserstrahlung im Wellenlängenbereich von 225,5–227,5 nm benötigt. Da dieser UV-Bereich nicht von Laserfarbstoffen abgedeckt wird, muss eine Frequenzverdopplungseinheit ($2\omega_1 = \omega_2$) nachgeschaltet werden.

Als Farbstoff wurde Coumarin 47 (Fa. Radiant Dyes) in methanolischer Lösung eingesetzt (durchstimmbar von 440–484 nm, Maximum bei 456 nm). Die Frequenzverdopplung des vom Farbstofflaser emittierten Lichtes im interessieren Bereich von 451–455 nm mit Pulsenergien zwischen 2 mJ und 3 mJ erfolgte durch einen nichtlinearen BBO-Kristall (BBO = ß-Bariumborat, ß-BaB₂O₄), welcher in einer so genannten Autotracking-Frequenzkonversionseinheit (SCANTRACK, Fa. Radiant Dyes) montiert war. In Abbildung 3-7 wird diese mit SHG (*engl.* Second Harmonic Generator) bezeichnet. Die Pulsenergie des frequenzverdoppelten Laserlichtes betrug etwa 0,03 mJ, die Scangeschwindigkeit des Farbstofflasers 0,002 nm/s bzw. 0,004 nm/s.

Der frequenzverdoppelte Laserstrahl wurde über zwei Prismen umgelenkt, mit einer Kombination aus einer Sammellinse (f = 100 mm) und einer plankonvexen Zylinderlinse (f = 10 mm) aufgeweitet (alle aus Quarz) und durchlief schließlich die Entladung ca. 1–1,5 mm über der Oberfläche des Arrays, so dass Spezies in einer definierten Ebene angeregt werden konnten.

Abbildung 3-7. Experimenteller Aufbau für die Detektion von NO mittels laserinduzierter Fluoreszenzspektroskopie (LIF). SHG: Frequenzverdopplungseinheit, P1 und P2: Umlenkprismen, ST: Strahlteiler, Z: Zylinderlinse, L: Sammellinse, PD: Photodiode, UG 5: Filter zur Unterdrückung des Anregungslichtes, DSO: Digitalspeicheroszilloskop, PMT: Photomultiplier, HV: Hochspannungsversorgung für PMT, PC: Personalcomputer, A/D-Karte: Analog/Digital-Wandler als Einsteckkarte für PC. Die Führung des Gasstromes durch den Reaktor erfolgte entgegengesetzt der Richtung des Laserstrahls (vgl. Abbildung 3-7). Das von den laserangeregten NO-Molekülen emittierte Fluoreszenzlicht wurde unter einem Winkel von 90° mit einem unmittelbar an den Reaktor angebrachten Photomultiplier (Typ XP2254B, Fa. Valvo GmbH) detektiert, wobei eine Minimierung der störenden Streulichtanteile der jeweils ausgekoppelten Anregungswellenlänge mit einem 3 mm dicken UG-5-Filter (Fa. Schott) realisiert wurde. Zur Fokussierung des Fluoreszenzlichtes war dem Multiplier eine Abbildungsoptik vorgeschaltet.

Das Signal des Photomultipliers (typische Betriebsspannung: 2700 V) wurde über einen 50 Ω Abschlusswiderstand an einen mittels einer Photodiode optisch getriggerten Boxcar Integrator und Averager (SR 250, Fa. Stanford Research Systems) weitergeleitet und gleichzeitig mit einem Digitalspeicheroszilloskop (Typ 9400A, 175 MHz, Fa. LeCroy) zur Überwachung aufgenommen. Mit dem Boxcar wurde ein Zeitfenster mit einer Weite von ca. 150 ns gesetzt, was zum einen insofern erforderlich war, um die Anteile des Laserstreulichts, die vom UG-5- Filter durchgelassen werden, von der NO-Fluoreszenz abzutrennen, zum anderen wurden damit Streulichteffekte der Entladung, d. h. deren Eigenleuchten unterdrückt. Das Fluoreszenzsignal wurde letztendlich zur Speicherung an einen Personalcomputer mit Analog/Digital-Wandlerkarte übertragen.

3.5 Optische Emissionsspektroskopie (OES)

Die Emissionsspektroskopie stellt die mit dem geringsten technischen Aufwand verbundene Methode der optischen Plasmadiagnostik dar. Im Gegensatz zur LIF-Spektroskopie handelt es sich dabei um ein passives Verfahren, mit dem Spezies (Atome, Ionen, Moleküle und Molekülfragmente), die im Plasma in elektronisch angeregten Zuständen vorliegen, über ihre Resonanzstrahlung nachgewiesen werden können. Dazu wird das von der Gasentladung emittierte Licht (das so genannte Eigenleuchten der Entladung) zunächst mit einem Monochromator bzw. Spektrographen spektral zerlegt und anschließend detektiert. Zur Detektion werden Photomultiplier oder aber auf CCD-Technik basierende Detektoren (Zeile, Array) eingesetzt. Im Fall der nicht thermischen Plasmen können jedoch mit Hilfe der OES im Allgemeinen nur qualitative Ergebnisse erzielt werden, da die für quantitative Aussagen benötigten Daten (z. B. Stoßquerschnitte) in der Literatur nur selten zur Verfügung stehen.

Der im Rahmen dieser Arbeit für die Emissionsspektroskopie verwendete Versuchsaufbau ist schematisch in Abbildung 3-8 dargestellt. Zur spektralen Aufspaltung des emittierten Fluoreszenzlichtes stand ein Imaging-Monochromator/Spektrograph (Typ TRIAX 320, Fa. Jobin Yvon GmbH) mit einer Brennweite *f* = 320 mm und einem Öffnungsverhältnis von *f*/4,1 zur Verfügung (CZERNY-TURNER-Design). Die Einkopplung des Fluoreszenzlichtes in den (motorisierten) Eintrittsspalt (Spaltbreite: 0–2 mm) des Spektrographen erfolgte über eine Quarz-lichtleitfaser mit Querschnittswandler (Länge: 1,8 m; Transmissionsbereich: 200–900 nm), wobei in der Regel eine Spaltbreite von 10 µm gewählt wurde. Der Spektrograph war mit zwei Gittern (68 mm × 68 mm) ausgestattet: Zum einen mit einem holographischen Gitter mit einer Strichzahl von 600 Linien/mm und einem Wellenlängenbereich von 150–400 nm und zum anderen mit einem blazed holographischen Gitter mit einer Blaze-Wellenlänge von 250 nm, einer Strichzahl von 1200 Linien/mm und einem Wellenlängenbereich von 190 nm bis 1200 nm. Die mit dem 1200-Linien/mm-Gitter erreichbare Auflösung beträgt bei λ = 546,07 nm und einer Spaltbreite von 10 µm 0,06 nm.

Zur Detektion – und somit als optischer Spektrumanalysator – wurde ein ICCD-Kamerasystem (*engl*. Intensified Charge Coupled Device) vom Typ FlameStar 2F der Firma La Vision, Göttingen, mit einer Intensitätsdynamik von 14 Bit eingesetzt. Bei diesem System handelt es

Abbildung 3-8. Experimenteller Aufbau optische Emissionsspektroskopie (OES).

sich um eine mit einem Bildverstärker (*engl.* image intensifier) gekoppelte CCD-Kamera. Diese wurde über einen Multichannel-Adapter an einem der beiden Ausgangsports des TRIAX-Spektrographen montiert. Der Bildverstärker erhöht nicht nur die Lichtempfindlichkeit der CCD-Kamera, sondern fungiert auch als extrem schneller Verschluss, so dass Belichtungszeiten bis in den Bereich von wenigen Nanosekunden realisiert und somit auch zeitlich schnelle Änderungen des Plasmazustandes, d. h. z. B. der Auf- bzw. Abbau der emittierenden Spezies, erfasst werden können. Bei der FlameStar 2F kann die Belichtungszeit in Schritten von 1 ns im Bereich von 5 ns bis 999 μ s gewählt werden. Der Bildverstärker des Systems arbeitet mit einer S20-Photokathode (\oslash 18 mm) und damit im Wellenlängenbereich von 200 nm bis 800 nm. Das Auflösungsvermögen des CCD-Chips (TH 7883 full frame), dessen Temperatur (20 °C ohne Wasserkühlung) thermoelektrisch über ein Peltier-Element stabilisiert wird, beträgt 576 \times 384 Pixel; bei einer Pixelgröße von 23 μ m \times 23 μ m ergibt sich eine Fläche von 13,2 mm \times 8,8 mm.

Die Datenaufnahme sowie die Steuerung des Kamerasystems und des Spektrographen erfolgte über eine Software der Firma La Vision (DaVis 5.4.4). Zur Verbesserung des Signal-Rausch-Verhältnisses erlaubt das System im so genannten Burst-Mode eine on-chip Integration, d. h., eine vorgegebene Anzahl von Messungen kann direkt auf dem CCD-Chip integriert und anschließend ausgelesen werden.

Mit dem Gesamtsystem können letztendlich – begrenzt durch die Photokathode der Bildverstärkers – im Wellenlängenbereich von etwa 200 nm bis 800 nm emissionsspektroskopische Messungen durchgeführt werden. Dabei kann bei Verwendung des 600-Linien/mm-Gitters mit einer Messung ein Wellenlängenintervall von 66 nm auf dem Chip abgebildet werden; bei Verwendung des Gitters mit 1200 Linien/mm ein Intervall von 32 nm.

3.6 Quadrupolmassenspektrometrie (QMS)

Die Quadrupolmassenspektrometrie (siehe z. B. [OEHME 96]) stellt ein kostengünstiges und unkompliziertes Verfahren zur online Endproduktanalyse dar. In den kompakten und sehr leistungsfähigen Quadrupolgeräten erfolgt – ihrem Namen entsprechend – die Massentrennung über die Resonanzfrequenz in einem hochfrequenten elektrischen Quadrupolfeld, das im Idealfall durch vier parallele hyperbolische Stabelektroden erzeugt wird und das aus einem Gleichspannungs- und einem Wechselspannungsanteil besteht.

Der in dieser Arbeit verwendete experimentelle Aufbau ist in Abbildung 3-9 schematisch dargestellt. Es wurde ein Quadrupolmassenspektrometer vom Typ Prisma[™] QMS 200 der Fa. Pfeiffer, Asslar, mit einem Massenbereich von 1–200 amu eingesetzt. Das QMS 200 ist mit einer offenen Gitterionenquelle (Kathode: Iridium yttriert) ausgestattet und arbeitet zum einen mit einem FARADAY-Auffänger und zum anderen mit einem Sekundärelektronen-Vervielfacher (Channeltron) als Detektor. Die minimale Nachweisgrenze liegt bei 10⁻¹¹ mbar (FARADAY-Auffänger) bzw. 10⁻¹⁴ mbar (Channeltron). Die Auflösung (Tal) über den gesamten Messbereich beträgt < 10 %. Damit ein optimales Ansprechverhalten des Spektrometers gewährleistet werden konnte, erfolgte die kontinuierliche Probennahme bei den durchgeführten Messungen an einer Verzweigung nur etwa 10 cm hinter dem Reaktorauslass.

Der maximal zulässige Betriebsdruck des FARADAY-Detektors bzw. des Channeltrons liegt bei $1 \cdot 10^{-4}$ mbar bzw. $1 \cdot 10^{-5}$ mbar. Um Messungen auch bei höheren Drücken bis hin zum Atmosphärendruck vornehmen zu können, musste zur Druckreduzierung ein zweistufiges Gaseinlass-System, bestehend aus einer Kapillare und einem Dosierventil, eingesetzt werden. Hierdurch wurde ein entmischungsfreies Einlassen des Gasgemisches gewährleistet. Die 1 m lange Quarzkapillare wird von einem beheizbaren Rohr aus Edelstahl umgeben, so dass eine Kondensation von Dämpfen in der Kapillare weitestgehend verhindert werden kann.

Abbildung 3-9. Experimenteller Aufbau Quadrupolmassenspektrometrie (QMS).

Der Probengasstrom wurde mit einer Drehschieberpumpe in Korrosivgas-Ausführung (Typ DUO 2.5 C, Fa. Pfeiffer), die auch die Untersuchung von halogenhaltigen Verbindungen wie z. B. Fluorwasserstoff (HF) problemlos gestattet, durch die Kapillare gepumpt. Dabei erfolgte eine Druckreduktion auf etwa 5 · 10⁻³ mbar. Um die Rückströmung von Kohlenwasserstoffen aus der Pumpe zu unterbinden, wurde diese mit einer Adsorptionsfalle (Aktivkohle) versehen. Als zweite Druckreduzierungsstufe wurde ein einstell- und absperrbares Ganzmetall-Gasdosierventil mit minimalem Totvolumen verwendet (Typ UDV 40, Fa. Pfeiffer). Der Druck im Rezipienten – bei der Mehrzahl der Messungen zwischen 1 · 10⁻⁷ mbar und 1 · 10⁻⁶ mbar – wurde durch einen Turbo-Drag-Pumpstand (Typ TSU 071 E, Fa. Pfeiffer) mit Membranvorpumpe aufrechterhalten und mit Hilfe eines Compact FullRange™ Gauge (Typ PKR 261, Fa. Pfeiffer) überwacht. Beim PKR 261 handelt es sich um eine Kombination aus Kaltkathodeund PIRANI-Messröhre, die über einen Druckbereich von 5 · 10⁻⁹ mbar bis 1000 mbar arbeitet.

Die Bedienung des Massenspektrometers erfolgte über die serielle Schnittstelle eines Personalcomputers mit Hilfe des im Lieferumfang enthaltenen Windows™-Softwarepakets Balzers Quadstar™ 422, wobei zur Untersuchung der Gaszusammensetzung zwei verschiedene Messarten des Massenspektrometers genutzt wurden: Um sich einen ersten Überblick über alle vorhandenen Gase zu verschaffen, wurde die Messart "scan analog" verwendet. Hierbei wird der lonenstrom als Funktion des Masse/Ladungs-(*m*/*z*-)Verhältnisses bestimmt und entsprechend auf dem Bildschirm dargestellt. Während die scan-analog-Messung leicht qualitative Aussagen über die Gaszusammensetzung erlaubt, ist sie zur Verfolgung der zeitlichen Änderung von Gaszusammensetzungen weniger geeignet. Für diese Zwecke wurde eine andere Messart, die so genannte MID-Messung (*engl*. Multiple Ion Detection), verwendet. Dabei werden nur die vorher angegebenen, interessierenden Massenzahlen angesprungen und deren Intensitäten, d. h. Ionenströme bestimmt. Auf dem Monitor erfolgt dann eine kontinuierliche Darstellung der gemessenen Ionenströme in Abhängigkeit von der Zeit bzw. als Funktion der durchfahrenen Messzyklen. Beim verwendeten Versuchsaufbau beträgt die Ansprechzeit des Massenspektrometers etwa 30–50 s, bis erste Konzentrationsänderungen nach dem Ein- bzw. Ausschalten der Entladung registriert werden. Die Ionenquellenspannung betrug bei allen Messungen 77 V, entsprechend einer Elektronenenergie von 77 eV. Dies ist ein typischer Wert für Normalspektren, der auch bereits am QMS voreingestellt war. Für die am Sekundärelektronen-Vervielfacher anliegende Spannung (SEV-Spannung) wurde ebenfalls der voreingestellte, typische Wert von 1400 V beibehalten.

4 Ergebnisse: MSE als Plasmaquelle

4.1 Geometrie und Design

Die Basisgeometrie der Elektroden-Arrays soll zunächst noch einmal anhand des im unteren Teil von Abbildung 4.1-1 dargestellten konkreten Layouts (für den DC-Betrieb) veranschaulicht werden: Die Arrays bestehen aus Metallstreifen 1, welche in paralleler Anordnung auf einem dielektrischen Trägermaterial aufgebracht und über breitere Kontaktflächen 2 zu zwei ineinander greifenden Kammstrukturen miteinander verbunden sind. Bei den untersuchten Arrays bewegten sich sowohl die Elektrodenbreite als auch der Elektrodenabstand gemäß der durchgeführten pd-Skalierung (s. Kapitel 2.2.1) typischerweise im Bereich zwischen einigen zehn und wenigen hundert Mikrometern. Davon abweichend wurde auch eine Reihe von MSE mit sehr viel breiteren Elektroden (400-2000 µm) sowie eine geringere Anzahl mit sehr schmalen Elektroden (10–15 μ m) eingesetzt. Elektrodendimensionen kleiner als 10 μ m erfordern einen aufwändigeren Produktionsprozess, so dass hier aus Kostengründen eine untere Grenze festgelegt wurde. Die Anzahl der Elektrodenelemente pro Array wurde u. a. auch durch dessen Gesamtabmessungen (10 mm \times 10 mm bis 50 mm \times 50 mm) bestimmt und reichte von minimal 6 bis maximal 1333. Bei der Mehrzahl der Arrays lag sie jedoch zwischen etwa 10 und 100. Entsprechend der jeweiligen Array-Größe betrug die Länge der Elektroden etwa 5 mm bis 30 mm.

Für die ersten im Rahmen dieser Arbeit durchgeführten Untersuchungen zum Einsatz solcher Array-Strukturen als Plasmaquelle wurde das aus der Detektortechnik bekannte Design zunächst nahezu unverändert übernommen. Dieses Originaldesign war zur Erzeu-

Abbildung 4.1-1. Basisgeometrie der untersuchten Mikroelektroden-Arrays (CAD-Zeichnung mit Ausschnittsvergrößerungen). – Das gezeigte Design wurde für den DC-Betrieb verwendet und entspricht im Wesentlichen dem Originaldesign aus der Detektortechnik. *1* Streifenelektroden, *2* Kontaktflächen, *3* Kathode mit elliptischem Ende, *4* Anodenende mit Kreis, *5* Abstand zwischen Elektrode und Kontaktfläche (entspricht mindestens dem zweifachen Elektrodenabstand), *6* Vorwiderstand der Kathode. gung von elektrischen Gasentladungen zuvor lediglich für einige am Institut durchgeführte Voruntersuchungen eingesetzt worden, so dass nur relativ wenige experimentelle Daten als grobe Orientierungspunkte vorlagen. In der Literatur wurden darüber hinaus keine Arbeiten bezüglich der Plasmaerzeugung mit diesen speziellen Detektorstrukturen gefunden. Die vorgenommene wesentliche Änderung des Designs betraf einen für den Einsatz als Detektor essenziellen Aspekt, der jedoch beim Gebrauch der Arrays als Plasmaquelle unbedeutend wird: die Auslesbarkeit einzelner Elektroden bzw. kleinerer Elektrodengruppen. Somit konnte das Design in dieser Hinsicht etwas vereinfacht werden, indem alle Anoden und alle Kathoden jeweils über eine gemeinsame Fläche elektrisch miteinander verbunden wurden.

In den beiden nachfolgenden Abschnitten sollen nun einige geometrische Details des Layouts näher diskutiert werden, die für den Betrieb der Arrays mit Gleichspannung bzw. mit hochfrequenter Wechselspannung jeweils charakteristisch sind. Sämtliche Layouts wurden mit der 2D-CAD-Software AutoCAD LT 2000 der Firma Autodesk im DWG-Format erstellt.

4.1.1 DC-Betrieb

In der Detektortechnik werden die Elektroden-Arrays naturgemäß mit Gleichspannung betrieben, so dass dann die "Elektrodenkämme" als Anode bzw. als Kathode fungieren. Auch in ihrer neuen Anwendung zur Plasmaerzeugung wurden die Arrays zunächst mit Gleichspannung betrieben. Die geometrischen Details des Layouts für den DC-Betrieb (s. Abb. 4.1-1, Ausschnittsvergrößerungen) sind dabei durch zwei Problematiken begründet, die aus dem Detektorbau hinlänglich bekannt sind: Zum einen kommt es immer wieder zum Auftreten von elektrischen Überschlägen (*engl.* sparks) und zum anderen muss bei einer erhöhten Leistungsaufnahme der Arrays für eine elektrische Entkopplung der einzelnen Elektroden gesorgt werden.

Zunächst einige Erläuterungen zum Auftreten von Überschlägen. Hauptsächlich treten diese an den Elektrodenenden und hierbei insbesondere an den Kathodenenden auf, was durch das hohe elektrische Feld in diesem Bereich bedingt ist. Demzufolge beschäftigt sich eine Reihe der in den letzten Jahren auf dem Gebiet der Mikrostreifen-Gasdetektoren veröffentlichten Arbeiten mit der Feldoptimierung an den Elektrodenenden (z. B. [DUERDOTH 94, OED 91]). Vom Ansatz her kann die Häufigkeit von Überschlägen minimiert werden, wenn – leicht verständlich – in dem Bereich, in dem die Elektroden parallel zueinander verlaufen, ein höheres elektrisches Feld erzeugt wird als an deren Enden. Infolgedessen müssen zunächst scharfe Ecken und Kanten, die zu lokalen Feldüberhöhungen führen, in jedem Fall vermieden werden. Darüber hinaus ist zu berücksichtigen, dass ein elektrisches Feld generell schwächer wird, wenn erstens der Abstand zwischen zwei Leitern mit entgegengesetztem Potenzial erhöht (E = U / d) und zweitens der Radius von Rundungen nicht zu gering gewählt wird.

Im Laufe der Zeit durchgeführte Untersuchungen haben ergeben, dass mit halbkreisförmigen Kathodenenden die Überschlagshäufigkeit zwar reduziert, die Problematik durch ein solches Design jedoch nicht vollständig gelöst werden kann. Gleichzeitig wurde beobachtet, dass die Elektrodenenden nach dem Auftreten von Überschlägen eine elliptische Form angenommen hatten – bedingt durch die Verdampfung des Metalls [DUERDOTH 94, OED 91]. Auf diesen experimentellen Beobachtungen aufbauend, sind elliptische Kathodenenden – durch Simulationsrechnungen immer weiter optimiert – im Detektorbau inzwischen zum Standard geworden. Unter Berücksichtigung dieser Ergebnisse wurden also bei allen in dieser Arbeit untersuchten Elektroden-Arrays die Kathodenenden von vornherein elliptisch gestaltet, um die Anzahl der Überschläge zu minimieren. Ergänzend wurde für den Abstand zwischen den Elektrodenenden und der jeweils benachbarten Kontaktfläche mindestens das Zweifache des Elektrodenabstandes gewählt. Genau wie bei den Kathoden basiert auch bei den

Abbildung 4.1.1-1. Prinzip der Entkopplung von Elektroden. – a) Nicht entkoppelte Elektroden; b) über Widerstände entkoppelte Elektroden.

Anoden die Gestaltung der Enden auf empirischen Ergebnissen. In der Detektortechnik hat es sich als günstig erwiesen, die Enden der Anoden mit kleinen Kreisen zu versehen [STOLZ 95]. Für den Plasmabetrieb wurde auch dieses Detail zunächst unverändert übernommen.

Das zweite wichtige Thema beim DC-Betrieb ist – wie oben erwähnt – das der Leistungsaufnahme. Bei niedrigen Drücken im Bereich weniger zehn Millibar können Gasentladungen bereits mit einer sehr geringen Leistungsaufnahme der Arrays erzeugt werden. Folglich ist der Spannungsabfall relativ klein, wenn der elektrische Durchbruch, d. h. die Zündung der Gasentladung erfolgt, und die Elektroden können als vollständig entkoppelt betrachtet werden. Dieses Verhalten ändert sich, sobald der Betriebsdruck erhöht wird. Dann erhöhen sich sowohl die Durchbruchsspannung als auch der fließende Entladungsstrom. In Abhängigkeit vom Design der Streifenelektroden wird die Spannungsverteilung über die gesamte Struktur beeinflusst, so dass der Durchbruch lediglich in begrenzten Bereichen des Arrays stattfindet (Abbildung 4.1.1-1a zeigt die Situation von elektrisch gekoppelten Elektroden). Infolgedessen war es notwendig, ein Elektroden-Array-Design zu entwickeln, welches die Erzeugung einer großflächigen Entladung auch bei höheren Drücken erlaubt. Diese Entladung setzt sich dann aus einer großen Anzahl von Mikroentladungen zusammen, welche im Hinblick auf ihre Leistungsaufnahme vollständig entkoppelt sind. Das Prinzip der elektrisch entkoppelten Mikroentladungen ist in Abbildung 4.1.1-1b illustriert. Hier beeinflusst der Entladungsstrom, nachdem der Durchbruch an einer Stelle des Arrays stattgefunden hat, nicht die an den benachbarten Elektroden anliegende Spannung. Die Entkopplung der Elektroden wird dadurch erreicht, dass im Layout durch eine Verringerung der Kathodenbreite auf einer bestimmten Länge (ca. 0,5–1,5 mm) ein individueller Widerstand für jede Kathode eingebracht wird (s. Abb. 4.1-1, 6).

4.1.2 DC - Betrieb mit Gitterelektrode

DC betriebene MSE liefern Plasmen im Niederdruckbereich < 70 mbar Helium. Variationen der Geometrieparameter Anodenbreite, Kathodenbreite und Elektrodenabstand haben, wie in Kap. 4.1 beschrieben, keinen signifikanten Einfluß auf den Betriebsdruck. Durch die Einführung einer zusätzlichen dritten Elektrode konnten jedoch die maximal erreichbaren Betriebsdrücke im DC - Betrieb auf 200 mbar Helium erhöht werden. Als dritte Elektrode kam ein engmaschiges Metall -Gitter zum Einsatz, welches in einem Abstand d von 1,5 bis 6 mm parallel zur MSE montiert wurde. Abb. 4.1.2-1 zeigt den schematisierten Aufbau.

Abb. 4.1.2-1: Schematische Darstellung des Aufbaus aus MSE und Gitterelektrode.

Sowohl der mit dem negativen Pol einer Hochspannungsquelle verbundenen MSE, als auch der mit positiver Hochspannung beaufschlagten Gitterelektrode war jeweils ein Vorwiderstand R_{MSE} bzw. R_{Gitter} vorgeschaltet, mit R_{MSE} = 2,81 M Ω und R_{Gitter} = 1,96 M Ω . Im Rahmen der Untersuchungen mit diversen Gitterelektroden mit unterschiedlichen Drahtstärken und Maschenweiten aus verschiedenen Materialien wurde auch die MSE gegen eine Metall - Platte ausgetauscht. Mit dieser Anordnung konnten Betriebsdrücke bis zu 1000 mbar Helium realisiert werden, abhängig vom Gittertyp und Abstand zwischen Platten - Elektrode und Gitter.

Solche homogenen, flächigen und nicht - filamentären Entladungen können als *atmospheric* pressure glow discharges (APGD oder APG) bezeichnet werden.

Okazaki et al. [YOKOHAMA 90, KOGOMA 94, SAWADA 95, KANAZAWA 88] sowie Massines et. al. [MASSINES 98B] berichten von einem *APG plasma* also einer Glimmentladung, die auch bei hohen Drücken nicht in eine Bogenentladung übergeht. Diese wird realisiert durch:

- a) den Betrieb in Helium als Trägergas.
- b) die Anregung mit hochfrequenten Spannungen im Kilohertz- bzw. Radiofrequenzbereich.
- c) ein Dielektrikum auf einer oder beiden Metall Elektroden.

Bekannt ist auch der Einsatz von Gitterelektroden [YOKOHAMA 90, KOGOMA 94, SAWADA 95] und strukturierten Elektroden [KANAZAWA 88] zur Stabilisierung von Glimmentladungen in Argon, Luft, Stickstoff oder Sauerstoff. Auch Trunec et al. [TRUNEC 98] berichten über eine *APGD* Anordnung mit einem feinmaschigen Gitter zwischen Elektrode und Dielektrikum. Während diese Untersuchungen mit hochfrequenter Wechselspannung durchgeführt wurden, zeigt die vorliegende Arbeit, daß die Erzeugung homogener Hochdruck - Glimmentladungen auch mit Gleichspannung möglich ist. Diese DC -Hochdruckentladungen sind allerdings bei Drücken > 300 mbar empfindlich für den Übergang zu filamentären Entladungen. Dabei kommt es nicht mehr zur Ausbildung eines flächigen Plasmas, sondern es treten einzelne Entladungskanäle mit Durchmessern von ca. 3 mm auf. Im folgenden sollen daher nur die stabilen homogenen Entladungen in einem Druckbereich bis 300 mbar diskutiert werden.

4.1.2.1 Maximal erreichbare Betriebsdrücke in Abhängigkeit von Betriebsgas, Gittertyp und Elektrodenmaterialien

Zur Ermittlung der maximal erreichbaren Betriebsdrücke für stabile homogene Entladungen wurden zahlreiche Parameter des in Abb. 4.1.2-1 dargestellten Aufbaus variiert. Verschiedene Gittermaterialien, darunter Edelstahl, Bronze, Messing und Nickel fanden Verwendung. Die Gitter ließen sich durch ihre Drahtdurchmesser und Maschenweiten charakterisieren. Tabelle 4.1.2-1 gibt einen Überblick über die eingesetzten Gittertypen die als Gewebemuster von der Fa. Filtertechnik W. Spee bezogen wurden.

Tabelle 4.1.2-1: eingesetzte Gittertypen

Gitter (mesh)	Maschenweite / mm	Drahtstärke / mm
500 Edelstahl	0,025	0,025
325 Edelstahl	0,040	0,035
200 Edelstahl	0,075	0,05
100 Edelstahl	0,15	0,10
40 Edelstahl	0,40	0,23
20 Edelstahl	0,87	0,40
160 Nickel	0,10	0,065
150 Messing	0,10	0,060
100 Bronze	0,14	0,11
Edelstahl	0,458	0,050

Die Gitter wurden straff gespannt und auf metallisierte Keramikringe (Innendurchmesser \emptyset_i = 48 mm, Außendurchmesser \emptyset_a = 65 mm) aufgelötet.

Als Gegen - Elektrode kamen neben den MSE auch $5 \times 5 \text{ cm}^2$ große Metallplatten aus Aluminium, Kupfer, Edelstahl, Messing und verzinktem Eisen zum Einsatz. Der Abstand zwischen Gitterelektrode und Metallplatte bzw. MSE wurde zwischen 1,5 und 6 mm variiert.

Erste Versuche wurden mit einer positiven Spannung am Gitter (100 bis 800 V) und einer negativen Spannung an der Plattenelektrode (- 300 bis - 1000V) durchgeführt. Sowohl die Gitterelektrode, als auch die Plattenelektrode waren mit einem Vorwiderstand zur Strombegrenzung versehen. Der Vorwiderstand an der Gitterelektrode R_{Gitter} betrug 1,96 MΩ, derjenige an der Plattenelektrode R_{Platte} = 2,81 MΩ.

Abb. 4.1.2-2 zeigt die Zündbedingungen für einen Aufbau aus Kupfer - Platte und Gitter in einem Abstand von 3 mm bei einem Betriebsdruck von 280 mbar. Die untere Kurve gibt die Spannungen an, die zum Zünden der Entladung mindestens aufgewendet werden müssen. Die obere Kurve stellt die Grenze zur filamentären Entladung dar. Bei Spannungswerten oberhalb dieser Kurve ließ sich kein homogenes, flächiges Plasma mehr betreiben, sondern es traten einzelne Entladungskanäle mit Durchmessern von ca. 3 mm auf. Entladungen im Spannungsbereich zwischen den beiden dargestellten Kurven waren homogen und flächig.

Abb. 4.1.2-2: Zündbedingungen für den Aufbau aus Kupfer - Platte und Gitter bei einem Druck von 280 mbar Helium und einem Abstand d = 3 mm zwischen Platte und Gitter.

Eine Spannungsumpolung mit negativen Gitterspannungen und positiven Spannungen an der Plattenelektrode führten in der Regel ebenfalls zu homogenen Plasmen bis zu Drücken um 200 mbar Helium. Es kam dabei aber häufiger zur Filamentbildung als bei umgekehrter Polung. Abb. 4.1.2-3 zeigt die Strom -Spannungs - Charakteristiken für zwei Systeme bei einem Druck von 200 mbar Helium. Ein Edelstahlgitter mesh 20 und eine Plattenelektrode

aus Kupfer in einem Abstand von 3 mm wurden eingesetzt. Die Gitterspannung wurde konstant gehalten bei + 400 V (obere Kurve) bzw. + 200 V (untere Kurve), während die Spannung an der Plattenelektrode sukzessive von - 100 auf - 1000 V erhöht wurde. Typische Ströme lagen zwischen 0,05 und 0,4 mA.

Abb. 4.1.2-3: Strom - Spannungs - Charakteristiken für den Aufbau aus Kupfer -Plattenelektrode und mesh 20 bei einem Abstand d = 3 mm und einem Helium -Druck von 200 mbar

In Argon ließen sich Entladungen nur bis zu einem Druck von 40 mbar betreiben. Bei Stickstoff lag der maximal erreichbare Druck bei nur 10 mbar.

Die folgenden Abbildungen zeigen die Abhängigkeit des maximalen Helium -Betriebsdruckes von den unterschiedlichen variierbaren Parametern. In Abb. 4.1.2-4 ist zunächst die Abhängigkeit des Betriebsdruckes vom Abstand zwischen Plattenelektrode und Gitter dargestellt. Als Plattenelektrode diente eine Kupferplatte. Das Gitter vom Typ *mesh 325* bestand aus Edelstahl mit einer Maschenweite von 0,040 mm und einer Drahtstärke von 0,035 mm. Abstände von 3, 4, 5 und 6 mm wurden gewählt. Deutlich ist der Anstieg des erreichbaren Druckes mit abnehmendem Abstand zu beobachten. Kleinere Abstände bis zu 1,6 mm wurden ebenfalls erprobt, jedoch traten dabei häufig filamentäre Entladungen auf.

Abb. 4.1.2-4: Abhängigkeit des Betriebsdruckes vom Abstand zwischen einer Kupfer - Plattenelektrode und einem Edelstahlgitter mesh 325.

Abb. 4.1.2-5 zeigt die maximalen Betriebsdrücke für unterschiedliche Gittermaterialien -Bronze, Messing, Nickel und Edelstahl. Die Maschenweiten der dabei eingesetzten Gitter lagen bei 0,10 - 0,15 mm, die Drahtstärken bei 0,060 - 0,10 mm. Der Abstand zwischen Plattenelektrode und Gitter betrug bei allen Systemen 3 mm. Nickel - und Edelstahl - Gitter lieferten hier geringfügig höhere Druckwerte als Bronze - und Messing - Gitter. Schließlich ist in Abb. 4.1.2-6 der Einfluß der Gittergeometrie gezeigt. Dargestellt sind Edelstahl - Gitter vom Typ mesh 20, 40, 100, 200, 325, 500. In dieser Reihe werden die Gitter von links nach rechts immer feiner, d.h. weisen kleinere Maschenweiten und Drahtstärken auf (Tab. 4.1.2-1). Der Abstand zwischen Plattenelektrode und Gitter betrug 1,5 mm. Die Druckwerte lagen je nach eingesetztem Gittertyp zwischen 225 und 300 mbar. Ein Trend ist diesen Druckwerten nicht zu entnehmen. Die höchsten Drücke wurden mit einem groben Gitter (mesh 20) und einem mittleren Gittertypen (mesh 100) erzielt.

Abb. 4.1.2-5: Abhängigkeit des Betriebsdruckes vom Gittermaterial.

Abb. 4.1.2-6 : Abhängigkeit des Betriebsdruckes vom Gittertyp.

Die voranstehenden Ergebnisse zeigen, daß der Einsatz einer zusätzlichen Gitterelektrode den maximal erreichbaren Betriebsdruck bei DC betriebenen MSE von einem Niederdruckbereich < 70 mbar Helium auf einen mittleren Bereich um 200 mbar Helium erhöht.

Der Austausch der MSE durch eine einfache Metall - Plattenelektrode, die der Gitterelektrode in einem definierten Abstand gegenübergestellt ist, ermöglicht die Generierung von flächigen, homogenen DC - Glimmentladungen bei vergleichsweise hohen Drücken um 300 mbar Helium. Instabile, d.h. filamentäre Entladungen sind teilweise auch bis zu 1000 mbar Helium möglich. Der hierzu verwendete Aufbau ist denkbar einfach und kostengünstig realisierbar. Als optimale Betriebsparameter haben sich kleine Abstände zwischen Gitterelektrode und Metallplatte um 3 mm herausgestellt, während der Einfluß von Gittertypus und Elektrodenmaterial eher als insignifikant zu beschreiben ist.

Die dargestellten Ergebnisse zeigen, daß die bisher nur im Wechselspannungsbetrieb eingesetzten Entladungen mit Gitter - Platten - Anordnungen auch im Gleichstrombetrieb erfolgreich zur Generierung stabiler, flächiger Plasmen bei hohen Drücken eingesetzt werden können.

4.1.3 Betrieb im kHz - Bereich

Während die DC - Entladung an mikrostrukturierten Elektrodensystemen ohne zusätzliche Gitterelektrode auf einen Druckbereich < 70 mbar Helium beschränkt blieb, ließen sich Helium - Entladungen bis zu Drücken um eine Atmosphäre im AC - Betrieb bei einer Frequenz von 9,55 kHz zünden. Auch in Stickstoff ist der Betrieb solcher Entladungen bis zu Drücken um 400 mbar möglich. Das Erscheinungsbild dieser Entladungen ist allerdings im Unterschied zu den DC -Plasmen nicht flächig und homogen. Vielmehr handelt es sich um einen stark filamentierten Entladungstyp.

Zur Spannungsversorgung im kHz - Betrieb diente der in Abb. 4.1.3-1 skizzierte Aufbau bestehend aus einem Funktionsgenerator (DS345 Stanford Research Systems), einem in der Elektronikwerkstatt des Hauses eigens angefertigten Verstärker und einer Zündspule (FA Bosch).

Abb. 4.1.3-1: Experimenteller Aufbau zum Betrieb der MSE im kHz - Bereich, bestehend aus einem Funktionsgenerator, Verstärker und Zündspule.

Der Funktionsgenerator lieferte Eingangsspannungen im Bereich von 110 - 220 mVpp bei einer Frequenz von 9,55 kHz. Die am Ausgang der Zündspule abgegriffenen Hochspannungen betrugen je nach gewählter Eingangsspannung 1900 Vpp bis 3800 Vpp. Abb. 4.1.3-2 zeigt den linearen Zusammenhang zwischen der Ausgangsspannung an der Zündspule und der vorgegebenen Eingangsspannung am Funktionsgenerator.

Abb. 4.1.3-2: Ausgangsspannung an der Zündspule bei vorgegebener Eingangsspannung am Funktionsgenerator.

Zum Einsatz kamen mikrostrukturierte Elektrodensysteme aus Kupfer mit einer Größe von 1,5 x 1,5 cm² Die Elektrodenbreiten lagen bei 100 bzw. 140 μ m, die Abständen betrugen 60 μ m. Der Reaktor wurde im Durchfluß betrieben, bei typischen Gasflüssen um 100 sccm He bzw. N₂.

Während sich atmosphärische Heliumplasmen schon bei Spannungen um 900 Vpp zünden ließen, waren in molekularen Gase wie beispielsweise Stickstoff weitaus höhere Spannungen um 3200 Vpp notwendig. Bei sehr hohen Zündspannungen kam es häufig zur Ausbildung sehr intensiv leuchtender Punkte, die sich auf der Elektrodenstruktur "festbrannten" und teilweise zur thermischen Zerstörung derselben führten. Daher konnten nur stabile, wenn auch filamentäre Helium -Entladungen an MSE im kHz - Bereich betrieben werden, während Stickstoffplasmen mit notwendigerweise hohen Betriebsspannungen nur sehr instabil brannten.

Deutlich niedriger als die zum primären Zünden der Entladung notwendige Spannung ist die jeweilige Brennspannung. Bei Helium - Entladungen lagen die Brennspannungen zwischen 350 und 600 Vpp. Abb. 4.1.3-3 verdeutlicht den mittels eines digitalen Speicheroszilloskops aufgezeichneten Spannungsverlauf in einer Helium - Entladung bei 400 mbar.

Abb. 4.1.3-3: Spannungsverlauf einer bei 9,55 kHz betriebenen Helium - Entladung bei 400 mbar.

Verglichen mit den DC - Entladungen an mikrostrukturierten Elektrodensystemen gestattet der Betrieb im kHz - Bereich erstmals die Erzeugung von Plasmen bei Atmosphärendruck in Helium und bei vergleichsweise hohen Drücken um 400 mbar in Stickstoff. Im Unterschied zu den DC - Plasmen handelt es sich aber nicht um flächige, homogene Glimmentladungen, sondern um stark filamentierte Entladungsformen, die für Anwendungen beispielsweise auf dem Gebiet der Oberflächenbehandlung (siehe Kapitel 6) nicht geeignet sind. Daher wurden diese Entladungen im niederfrequenten Gebiet nicht weiter verfolgt. Erfolgversprechender erwies sich der im folgenden behandelte Betrieb der MSE mit hochfrequenter Wechselspannung bei einer Radiofrequenz von 13,56 MHz.

4.1.4 HF-Betrieb (13,56 MHz)

Während bei Betrieb mit Gleichspannung scharfe Ecken und Kanten, die zu lokalen Feldüberhöhungen führen, in jedem Fall vermieden werden müssen, zeigen die Experimente, dass diese Einschränkung für den Betrieb mit hochfrequenter Wechselspannung nicht gilt. Somit konnten hier auch in-sich-strukturierte Elektroden in verschiedenen Varianten eingesetzt werden. Sie sind in Abbildung 4.1.4-1 schematisch dargestellt. Neben den für den DC-Betrieb typischen glatten Elektrodenkanten kamen hier beispielsweise auch gezackte Formen zum Einsatz. Die lokalen Feldüberhöhungen können beim HF-Betrieb erfolgreich als "Zündhilfen" genutzt werden, welche die Zündspannung der Entladung herabsetzen.

Die für den HF-Betrieb verwendeten Elektroden unterscheiden sich noch in einer anderen Hinsicht von denen für den DC-Betrieb. Bei letzteren waren die beiden Elektrodensysteme – in Anlehnung an das ursprüngliche Detektordesign – in der Regel von unterschiedlicher Breite, wobei es sich im Laufe der Untersuchungen als am günstigsten erwiesen hat, jeweils die bereiteren Elektroden als Kathoden und die schmaleren als Anoden zu schalten. Bei den Arrays für den HF-Betrieb waren die beiden Elektrodensysteme dagegen identisch; alle Elektroden hatten hier elliptische Enden und waren von gleicher Breite.

Abbildung 4.1.4-1 Elektrodenvarianten (nicht maßstabsgerecht, typische Elektrodenbreite: 100–350 µm, typischer Elektrodenabstand: 50–250 µm) für den Betrieb mit hochfrequenter Wechselspannung (13,56 MHz). – a) Glatt (Standard beim DC-Betrieb); b) gezackt versetzt; c) Halbkreise (\emptyset 25 µm) gegenüberliegend; d) Halbkreise (\emptyset 25 µm) versetzt.

4.2 Materialien und Fertigungstechniken

Die Herstellung von Elektroden-Arrays mit Abmessungen im Mikrometerbereich erfordert einen vergleichsweise hohen apparativen Aufwand. Insbesondere müssen die Arbeiten in Reinräumen mit aufbereiteter, partikelarmer Luft erfolgen, so dass eine Herstellung in Eigenregie nicht möglich war. Somit wurde die Fertigung der MSE nach Vorgabe des jeweiligen Designs im Verlauf der Untersuchungen von verschiedenen Firmen bzw. vom Institut für Mikrotechnik (IMT) der TU Braunschweig übernommen. Die dabei eingesetzten Fertigungstechnologien sollen im Folgenden näher vorgestellt werden. Zuvor soll jedoch kurz auf die verwendeten Elektroden- bzw. Trägermaterialien und deren elektrische und thermische Eigenschaften eingegangen werden.

4.2.1 Elektrodenmetalle

Ziel der Untersuchungen war es, möglichst viele Metalle als Elektrodenmaterial hinsichtlich der elektrischen und thermischen Eigenschaften, aber auch im Hinblick auf die Stabilität (Abtrag durch Sputterprozesse, Angriff durch korrosive Gase) zu testen. Je nach MSE-Hersteller musste jedoch bei der Auswahl des Elektrodenmaterials teilweise auch berücksichtigt werden, ob dort die entsprechenden Fertigungsverfahren (Sputtern, Galvanik usw.) *standardmäßig* für ein gewünschtes Metall eingesetzt werden konnten. Infolgedessen ergaben sich einige Einschränkungen, da eine individuelle Anpassung der Prozessparameter zur Fertigung der Elektroden-Arrays eine z. T. erhebliche Kostenerhöhung mit sich gebracht hätte. Vor diesem Hintergrund wurde zunächst Chrom (Cr), später Gold (Au) und in erster Linie Kupfer (Cu) als Elektrodenmaterial verwendet.

Bezüglich der elektrischen und thermischen Eigenschaften zeichnen sich Gold und Kupfer durch ihre bekanntermaßen hohe spezifische elektrische Leitfähigkeit (ca. $2 \cdot 10^{-8} \Omega m$ bei 298 K) sowie eine gute Wärmeleitfähigkeit (etwa 300-400 W/mK) aus (vgl. Tabelle 4.2-1). Unter Gesichtspunkten der Herstellung bieten beide Metalle den Vorteil, dass die bereits fertig strukturierten Elektrodensysteme leicht durch galvanische Prozesse verstärkt und somit deren Standzeiten wesentlich verbessert werden können. Gold zeigt zwar im Vergleich zu Kupfer eine höhere chemische Resistenz, aufgrund der höheren Materialkosten, die sich insbesondere bei galvanisch verstärkten Systemen deutlich bemerkbar machen, wurde jedoch vorwiegend mit Kupferelektroden gearbeitet. Hierbei konnten Schichtdicken bis zu 100 µm relativ problemlos realisiert werden. Nickelelektroden, welche ebenfalls selektiv galvanisch verstärkt werden können, stellen eine kostengünstige Alternative zu Goldelektroden dar, falls eine hohe chemische Resistenz gefordert wird. Entsprechende Arrays sollten in die Untersuchungen mit einbezogen werden, konnten jedoch nicht mehr rechtzeitig vor Abschluss dieser Arbeit fertig gestellt werden. Aufgrund der im Vergleich zu Kupfer und Gold schlechteren elektrischen Leitfähigkeit und aufgrund der schlechteren Wärmeleitfähigkeit des Nickels (vgl. Tabelle 4.2-1) sind hierbei jedoch keine massiven Nickelelektroden vorgesehen, sondern vielmehr wird die Verwendung von Kupferelektroden, die mit einer dünnen Nickelschicht überzogen sind, angestrebt. Für den Betrieb mit Wechselspannung besteht zur Verbesserung der Standzeiten darüber hinaus die Möglichkeit, unabhängig von der Art des verwendeten Metalls, die Elektroden mit einer dielektrischen ",Schutzschicht" aus z. B. Al₂O₃-Keramik zu versehen (s. u.).

Bevor die Aufbringung der eigentlichen Elektrodenmetalle auf Werkstoffe wie Glas oder Keramik erfolgen kann, müssen die Substrate mit einer Haftschicht versehen werden. Diese besteht aus nur relativ wenigen Atomlagen, d. h., die Schichtdicke bewegt sich im Bereich von wenigen zehn Nanometern. In der Mikrotechnik ist der Einsatz von Chrom als Haftschicht am weitesten verbreitet; auch bei der Mehrzahl der untersuchten MSE wurde Chrom verwendet. Alternativ wurde eine Legierung aus Titan (Ti) und Wolfram (W) eingesetzt. **Tabelle 4.2-1.** Elektrische und thermische Eigenschaften von Metallen, die zur Herstellung von mikrostrukturierten Elektrodensystemen verwendet wurden. – EM: Elektrodenmetall, HS: Haftschicht.

Metall	Au	Cu	Cr	Ni	Ti	W
Verwendung als	EM	EM	EM,	EM	EM,	EM,
max. realisierte Schichtdicke / μm	2	100	0,1/0,0	a)	$0,5^{\text{b}}$	0,5 ^{b)}
elektrische Leitfähigkeit ^{c)} / 10 ⁻⁸	2,2	1,7	12,7	7	40	5
Wärmeleitfähigkeit ^{d)} / (W/mK)	320	400	94	91	22	170
Schmelzpunkt ^{e)} / °C	1063	1083	1857	1452	1660	3410

^a nicht analysiert, ^b Titan und Wolfram wurden als Legierung eingesetzt ("TiW"), ^c bei (293– 298) K [www.webelements. com], ^d bei 25 °C [www.webelements.com], ^e [CRC 81].

4.2.2 Trägermaterialien

Als Trägermaterial wurden zur Variation der elektrischen und thermischen Eigenschaften Silizium, Keramik sowie verschiedene Gläser verwendet (Tabelle 4.2-2). Diese Materialien stehen typischerweise als 4"-Wafer zur Verfügung und können somit zur MSE-Herstellung in der Regel problemlos genutzt werden. Bei der Keramik handelte es sich um eine weit verbreitete Al₂O₃-Keramik mit einer Substratstärke von 0,63 mm. Al₂O₃-Keramik zeichnet sich durch chemische Inertheit, eine hohe mechanische Stabilität sowie durch eine im Vergleich zu Gläsern erhöhte Wärmeleitfähigkeit aus, so dass Verlustwärmen gut abgeführt werden können. Die Wärmeleitfähigkeit erhöht sich noch einmal um das 8fache, wenn man zu Silizium übergeht. Die hier verwendeten Siliziumwafer hatten eine Dicke von 0,5 mm. Zur elektrischen Isolation muss deren Oberfläche mit einer Schicht aus SiO₂ versehen werden. Zu diesem Zweck werden die Wafer für mehrere Stunden in einer sauerstoffhaltigen Atmosphäre in einem Ofen bei 800 °C bis 1200 °C einer thermischen Oxidation unterzogen. Problematisch hierbei ist, dass für dickere SiO₂-Schichten sehr lange Prozesszeiten erforderlich sind. Bei den eingesetzten Siliziumwafern betrug die Dicke der SiO₂-Schicht etwa 3 μm. Bei den Gläsern kamen unterschiedliche Typen in unterschiedlichen Stärken (0,7–2,3 mm) zum Einsatz. Nähere Angaben zu den einzelnen Glassubstraten finden sich in Kapitel 4.3.

Substrat	Silizium	Al ₂ O ₃ -Keramik	Glas
Substratstärke / mm	0,5	0,63	0,7–2,3
ε	11,9 ^{a)}	9,5 ^{a)}	3–15 ^{b)}
Wärmeleitfähigkeit / (W/mK)	157 ^{a)}	20 ^{a)}	0,8–1 ^{b)}

Tabelle 4.2-2. Elektrische und thermische Eigenschaften der für die Fertigung von mikrostrukturierten Elektrodensystemen eingesetzten Trägermaterialien.

^a [MENZ 97], ^b glasartabhängig [KUCHLING 95].

4.2.3 Hersteller und Fertigungstechniken

Im Mittelpunkt der Fertigung von MSE stehen Lithographieverfahren. Bei diesen Verfahren wird das zu strukturierende Substrat mit einem strahlungsempfindlichen Lack (*engl.* resist) beschichtet. Durch Belichtung und Entwicklung wird dann zunächst im Resist die gewünschte Struktur erzeugt, die anschließend z. B. durch Ätzen auf eine darunter liegende Metallschicht übertragen werden kann. Zur Belichtung der Substrate wird eine Maske mit Absorberstrukturen ("Lithographiemaske") benötigt, die vorab über ein seriell schreibendes Verfahren angefertigt werden muss. Dabei werden die Daten eines Layouts, welches mit Hilfe eines CAD-Systems erstellt wurde, auf ein mit einem dünnen Metallfilm (z. B. Chrom) beschichtetes Glassubstrat "geschrieben" [BÜTTGENBACH 91]. Solche, für die Maskenherstellung vorgesehene Substrate wurden zu Beginn der Untersuchungen auch zur Herstellung von Mikrostrukturierten Elektrodensystemen eingesetzt. Ansprechpartner war in diesem Fall die Firma Photronics MZD GmbH (ehemals MZD Maskenzentrum für Mikrostrukturierung Dresden GmbH), die standardmäßig Lithographiemasken fertigt.

Einen Hauptabnehmer solcher Masken stellt die Halbleiterindustrie dar, wo sie dazu benötigt werden, um integrierte Schaltkreise mittels lithographischer Techniken auf Substrate zu übertragen. Demnach handelt es sich bei der Maskenherstellung um einen äußerst präzisen, aber auch um einen standardisierten Prozess. Aufgrund des herrschenden Standards bestehen (begrenzte) Variationsmöglichkeiten nur bezüglich der einsetzbaren Substrate, während man beim Metall auf Chrom festgelegt ist. Da zu jenem Zeitpunkt noch keine alternativen Fertigungsmöglichkeiten zur Verfügung standen, konnte demnach zunächst auch nur Chrom als Elektrodenmetall verwendet werden, welches zudem nur in einer geringen Schichtdicke von maximal 0,1 µm verfügbar war. Die Strukturierung des Resists erfolgt bei der Maskenherstellung mit Hilfe eines Elektronenstrahls ("Elektronenstrahlschreiben" oder "Elektronenstrahllithographie"). Die so erhaltene Struktur dient dann als Ätzmaskierung für die Chromschicht.

Da der direkte Einsatz der in Form von Chrommasken gefertigten Mikrostrukturierten Elektrodensysteme zur Plasmaerzeugung mit relativ hohen Kosten verbunden ist, wurde parallel zu den ersten Untersuchungen nach anderen Fertigungsmöglichkeiten gesucht. Über die Firma Photronics MZD GmbH konnte ein Kontakt zur Radeberger Hybridelektronik GmbH hergestellt werden. Dort wurde eine Kleinserie von vier Elektrodenstrukturen (50 mm \times 50 mm) mit dünnschichttechnischen Methoden auf einem Glassubstrat gefertigt. Als Schichtsystem wurde TiW/Au eingesetzt, wobei TiW als Haftschicht diente und eine anschließend aufgesputterte Au-Schicht galvanisch auf 2 µm verstärkt wurde. Dabei stellte sich heraus, dass eine fehlerfreie Herstellung der Strukturen einen höheren Aufwand erforderte als zunächst angenommen. Ohne eine besondere Optimierung der eingesetzten Standardprozesse der Dünnschichttechnik konnte kein befriedigendes Ergebnis erzielt werden.

Zu diesem Zeitpunkt wurden am Institut zwei neue Projekte zur Untersuchung des Einsatzes von MSE in der Plasmatechnik begonnen, so dass die Herstellung der Arrays von dort an von den jeweils dafür vorgesehenen Projektpartnern übernommen werden konnte. Zum einen waren dies auf industrieller Seite die Robert Bosch GmbH in Stuttgart sowie die Roth & Rau GmbH in Wüstenbrand, zum anderen aus dem universitären Bereich das Institut für Mikrotechnik (IMT) der TU Braunschweig.

Bei der Robert Bosch GmbH wurden zunächst mittels lithographischer Techniken einige Elektroden-Arrays auf Si-Substraten gefertigt. Als Schichtsystem wurde wiederum TiW/Au ausgewählt. Die ersten Untersuchungen mit diesen Arrays ließen jedoch Silizium als Trägermaterial ungeeignet erscheinen, so dass wieder zu Glassubstraten übergegangen wurde. Im Gegensatz zu den in Radeberg gefertigten Arrays wurden die Elektroden nicht galvanisch verstärkt. Darüber hinaus wurde die TiW-Schicht bis zu Stärken von etwa 0.5 um aufgesputtert und anschließend mit einer nur dünnen Goldschicht (ca. 0,1 μm) überzogen, so dass hier TiW das eigentliche Elektrodenmaterial und nicht nur eine Haftschicht darstellt. Um mehr Geometrien in kürzerer Zeit testen zu können, wurden nun kleinere Arrays (10 mm × 10 mm) gefertigt, so dass auf einem 4"-Wafer 36 Strukturen untergebracht werden konnten. Daraus ergibt sich weiterhin der Vorteil, dass die Arrays unter identischen Bedingungen hergestellt werden. Mit den bei Bosch gefertigten Arrays war es dann möglich, die geometrischen Parameter weitreichend systematisch zu untersuchen. Während eine Untersuchung der Geometrie also keine Probleme bereitete, war die Variierung der Materialparameter etwas erschwert, da bei Bosch ebenfalls weitgehend nur Standardprozesse eingesetzt werden konnten.

Vor diesem Hintergrund wurde die Zusammenarbeit mit dem IMT der TU Braunschweig verstärkt, von dem die Mehrzahl der untersuchten Mikrostrukturierten Elektrodensysteme

Abbildung 4.2-1. Herstellungsprozess MSE. – a) Träger *1*; b) Träger mit Cr-Haftschicht *2*; c) Auftragung einer Cu-Startschicht *3*; d) Aufschleudern von Fotolack *4*; e) Belichten und Entwickeln des Lacks; f) galvanische Aufbringung von Cu; g) Entfernung des Fotolacks; h) Entfernung der Cu-Startschicht; i) Entfernung der Cr-Haftschicht; j) Ätzung des Substrates; k) Aufbringung einer dielektrischen Schutzschicht *5*.

schließlich hergestellt wurde. Dominierendes Elektrodenmaterial war hierbei Kupfer, welches sowohl auf Glas- als auch auf Keramiksubstraten eingesetzt wurde. Gleichzeitig wurden einige neue Array-Varianten gefertigt, z. B. solche mit "unterätzten" Elektroden oder Elektroden mit Schutzschichten. Anhand von Abbildung 4.2-1 sollen die verschiedenen Fertigungsschritte, wie sie am IMT für galvanisch verstärkte MSE durchgeführt wurden, exemplarisch vorgestellt werden: Ein dielektrisches Substrat (Glas, Keramik) *1* wird zunächst mit einer dünnen (10–50 nm) Cr-Haftschicht *2* versehen (Abb. 4.2-1 b). Auf diese Haftschicht wird durch Sputtern (Kathodenzerstäuben) eine Startschicht *3* mit einer Dicke von etwa 1–

3 μm aus z. B. Kupfer aufgebracht (Abb. 4.2-1 c), die später galvanisch verstärkt werden soll. Anschließend wird Fotolack *4* aufgeschleudert, belichtet und entwickelt (Abb. 4.2-1 d, e). Nun erfolgt die Aufgalvanisierung der Cu-Startschicht in den Bereichen, in denen sich kein Fotolack mehr befindet (Abb. 4.2-1 f). Letzterer wird nachfolgend entfernt (Abb. 4.2-1 g). Nun müssen die Cu-Startschicht sowie die Cr-Haftschicht nacheinander entfernt werden (Abb. 4.2-1 h, i). An dieser Stelle ist die Fertigung der Metallelektroden abgeschlossen, so dass die Arrays zur Plasmaerzeugung eingesetzt werden können. Andererseits kann an dieser Stelle zusätzlich noch eine dielektrische Schutzschicht *5* aus Al₂O₃ mit einer Dicke von bis zu 0,5 μm auf das Elektrodensystem aufgebracht werden (vgl. Abb. 4.2-1 k). Bei dem in Abb. 4.2-1 k dargestellten System wurden die Elektroden außerdem vor der Aufbringung der Schutzschicht "unterätzt" (Abb. 4.2-1 j), d. h., das zwischen den Elektroden befindliche Substrat wurde in einem Ätzprozess (Plasmaätzen oder Flusssäure) entfernt, was jedoch nur bei Glassubstraten möglich ist. Die vom IMT gefertigten Mikrostrukturierten Elektrodensysteme wurden für den Betrieb mit Hochfrequenz (13,56 MHz) eingesetzt.

4.3 Geometrie- und Materialdaten

Im Verlauf der Arbeit wurde eine Vielzahl unterschiedlicher MSE untersucht. Aus Gründen einer besseren Übersicht sind die Elektroden-Arrays im Folgenden gemäß ihrer Substratgröße in drei Klassen eingeteilt, die in absteigender Größe mit "L", "M" und "S" bezeichnet werden. Die Bezeichnungen für die einzelnen Arrays ergeben sich dann aus der Klassenbezeichnung, dem Namen des Herstellers sowie einer fortlaufenden Kennzeichnung (z. B. Typ M-IMT-A1). Tabelle 4.3-1 fasst die einzelnen Typen zusammen, die in den nachfolgenden Abschnitten in der Reihenfolge, in der sie in der Arbeit untersucht wurden, detailliert beschrieben werden.

4.3.1 Typ L-MZD (50 mm × 50 mm) – Photronics MZD GmbH

Die ersten MSE, die im Rahmen dieser Arbeit zur Verfügung standen, wurden von der Firma Photronics MZD GmbH, Dresden, als Chrommaske gefertigt. Die Elektrodenbreite wurde zwischen 12 µm und 400 µm variiert (Kathoden: 15–400 µm, Anoden: 12–25 µm), der Elektrodenabstand zwischen 15 µm und 294 µm. Die zur Herstellung des elektrischen Kontaktes genutzte Leiterbahn hat eine Fläche von etwa 40 mm × 4 mm. Als Substrate wurden Borsilikat- und Sodalime-Gläser mit einer Stärke von 1,6 mm bzw. 2,3 mm der Firma Hoya, Japan, eingesetzt. Auf die Gläser ist bereits eine Chromschicht (0,1 µm) aufgedampft, deren Oberfläche zur Verminderung von Reflexionen – ebenfalls herstellerseitig – einige Lagen tief oxidiert ist. Aus einem 4⁻⁻⁻Glassubstrat wurden jeweils vier Elektroden-Arrays mit einer Fläche von 50 mm × 50 mm gefertigt. Die aktive Größe der Arrays, d. h. die Größe der Gasentladung, beträgt maximal 40 mm × 30 mm. Für eine ca. 3 cm lange und 400 µm breite Kathode ergibt sich ein elektrischer Widerstand von ca. 0,75 Ω , in der gleichen Größenordnung liegt deren Vorwiderstand. Die L-MZD MSE wurden ausschließlich mit Gleichspannung betrieben. Die geometrischen Parameter werden in Tabelle 4.3-2 zusammengefasst.

Tabelle 4.3-1. Klassifizierung der MSE nach Substratgröße. – MZD: Photronics MZD GmbH (Dresden), RH: Radeberger Hybridelektronik GmbH (Radeberg), RBO: Robert Bosch GmbH (Stuttgart), IMT: Institut für Mikrotechnik der Technischen Universität Braunschweig.

Тур	L	М		ŝ	6
Hersteller	MZD, RH	IMT	RBO	IMT	RBO
Substratgröße / mm ²	50×50=2500	36×36=1296	30×30=900	15×15=225	10×10=100
rel. Fläche / Typ L	1,0	0,52	0,36	0,09	0,04
Plasmafläche / mm ²	40×30=1200	30×25=750	30×25=750	7,5×7,5=56	10×6=60
rel. Plasmafläche / Typ L	1,0	0,6	0,6	0,05	0,05
Betrieb mit	DC	HF	DC	HF	DC

4.3.2 Typ L-RH (50 mm × 50 mm) – Radeberger Hybridelektronik GmbH

Von der Radeberger Hybridelektronik GmbH wurden auf einem AF 45 Glassubstrat (4^{''}) mit einer Standarddicke von 1,1 mm vier MSE à 50 mm × 50 mm mit dünnschichttechnischen Methoden gefertigt (s. Abb. 4.3-1). Zur photolithographischen Strukturierung der Substrate wurde von der Firma Photronics vorab eine 5^{''}-Chrommaske bezogen. Beim Glastyp AF 45 handelt es sich um ein alkalifreies Borsilikat-Glas der Firma DESAG. Als Schichtsystem wurde TiW/Au eingesetzt. Dabei wurde TiW als dünne Haftschicht verwendet und eine anschließend aufgesputterte Goldschicht galvanisch auf etwa 2 µm verstärkt. Die geometrischen Parameter sind in Tabelle 4.3-3 zusammengefasst. Vorwiegend wurde hier der Elektrodenabstand bei konstanten Elektrodenbreiten variiert. Die maximale Ausdehnung des Plasmas beträgt auch hier 40 mm × 30 mm. L-RH MSE wurden mit Gleichspannung betrieben.

Array	Kathoden- breite / μm	Anoden- breite / μm	Elektroden- abstand / μm	Anzahl der Elektroden	Glasart (Dicke / mm)
A1	20	20	100	332	
A2	20	20	35	726	
A3	15	15	15	1332	SL (2,3)
A4	400	12	294	80	
B1a	400	12	254	86	
B2a	200	12	254	110	$(1 c)^{a}$
B3a	400	12	154	110	SL (1,0) /
B4a	400	12	254	86	
B1b	400	12	254	86	
B2b	200	12	254	110	$\mathbf{D}\mathbf{C}$ (\mathbf{D},\mathbf{D})
B3b	400	12	154	110	BS (2,3)
B4b	400	12	254	86	
C1	50	25	37,5	532	
C2	200	25	50	244	
C3	300	25	150	126	BS (2,3) "
C4	100	25	100	244	

Tabelle 4.3-2. Zusammenstellung der geometrischen Parameter der Typ L-MZD MSE.

^a SL: Sodalime-Glas (70 % SiO₂, 8 % Na₂O, 9 % K₂O, 13 % andere Oxide), Oberflächenwiderstand: $10^{10} \Omega$, spezifischer elektrischer Widerstand: $10^{15} \Omega$ cm. ^b BS: Borsilikat-Glas, alkalifrei (55 % SiO₂, 14 % Al₂O₃, 31 % andere Oxide), Oberflächenwiderstand: $10^{13} \Omega$, spezifischer elektrischer Widerstand: $10^{16} \Omega$ cm. Alle Angaben gemäß Hersteller (Fa. Hoya, Japan).

Abbildung 4.3-1. Typ L-RH Mikroelektroden-Array (50 mm × 50 mm). – Goldelektroden auf AF-45-Glasträger, Hersteller: Radeberger Hybridelektronik GmbH.

Array	Kathoden- breite / μm	Anoden- breite / μm	Elektroden- abstand / μm	Anzahl der Elektroden	Glasart (Dicke / mm)
A1	400	25	50	150	
A2	400	25	100	126	
A3	400	12	154	110	AF 45 (2,3)
A4	100	25	100	244	

Tabelle 4.3-3. Zusammenstellung der geometrischen Parameter der Typ L-RH MSE.

^a Alkaliarmes Borsilikat-Glas der Firma DESAG, enthält hohe Anteile von Bariumoxid (BaO) und Aluminiumoxid (Al₂O₃). Dielektrische Konstante laut Hersteller (20 °C, 1 MHz): 6,2.

4.3.3 Typ M-RBO (30 mm × 30 mm) – Robert Bosch GmbH

Vom Typ M-RBO MSE wurden vier Geometrievarianten von der Robert Bosch GmbH, Stuttgart, gefertigt (s. Abb. 4.3-2). Bei einer Array-Größe von 30 mm × 30 mm beträgt die maximal mögliche Größe der Gasentladung 30 mm × 25 mm. Damit beläuft sich die aktive Fläche der Typ M-RBO MSE auf nur 60 % der aktiven Fläche der Typ L Arrays. Ausgehend von einer Geometrie mit einer Kathodenbreite sowie einem Elektrodenabstand *d* von 100 μ m (Array A4) wurde hier die Kathodenbreite sukzessive um 50 μ m erhöht, während *d* gleichzeitig um jeweils 25 μ m verringert wurde. Demnach erhöht sich der Metall-Bedeckungsgrad von Array A4 hin zu Array A1, während die Anzahl der Elektroden (178) konstant bleibt. Die Breite der Anoden als auch die Breite des Kathodenvorwiderstandes beträgt bei allen vier Varianten einheitlich 25 μ m. Für die Länge des Vorwiderstandes wurden 1500 μ m gewählt. Die Gesamtlänge der Anoden und Kathoden beträgt ca. 25 mm, der Abstand zwischen deren Enden und der jeweils entgegengesetzt gepolten Kontaktfläche 1000 μ m. Die geometrischen Daten der Typ M-RBO MSE sind in Tabelle 4.3-4 wiedergegeben. Als Trägermaterial wurden 4′′-Siliziumwafer mit einer Dicke von 0,5 mm verwendet. Um die Wafer mit einer elektrisch

Abbildung 4.3-2. Typ M-RBO Mikroelektroden-Arrays. – 4^{''}-Siliziumwafer mit vier MEA á 30 mm × 30 mm. Elektrodenmaterial: TiW/Au, Hersteller: Robert Bosch GmbH, Stuttgart. isolierenden Schicht zu versehen, wurden diese einer thermischen Oxidation unterzogen. Die Dicke der an der Oberfläche ausgebildeten Schicht aus Siliziumdioxid (SiO₂) betrug dabei etwa 3 µm. Als Elektrodenmaterial diente eine 0,5 µm dicke Schicht einer Titan-Wolfram-Legierung ("TiW"), die zusätzlich mit einer dünnen Goldschicht (ca. 80–100 nm) überzogen wurde. Für den Widerstand des TiW/Au-Schichtsystems wurde ein Wert von 0,25 Ω /Flächeneinheit bestimmt. Typ M-RBO MSE wurden mit Gleichspannung betrieben.

Array	Kathoden- breite / μm	Anoden- breite / μm	Elektroden- abstand / μm	Anzahl der Elektroden	Substrat (Dicke / μm)
A1	250	25	25	178	
A2	200	25	50	178	
A3	150	25	75	178	SI (500)/SIO ₂
A4	100	25	100	178	(3)

 Tabelle 4.3-4. Zusammenstellung der geometrischen Parameter der Typ M-RBO MSE.

4.3.4 Typ S-RBO (10 mm × 10 mm) – Robert Bosch GmbH

Insgesamt wurden von den 10 mm × 10 mm großen Typ S-RBO Arrays 36 verschiedene Geometrievarianten von der Robert Bosch GmbH gefertigt (s. Abb. 4.3-3). Die maximal mögliche Ausdehnung der Entladung beträgt hier 10 mm × 6 mm. Tabelle 4.3-5 zeigt die systematisch variierten Array-Parameter. In den Serien B, C, D und E variiert jeweils der Elektrodenabstand von 25 µm bis 200 µm, während die Kathodenbreite konstant gehalten wurde (B und C: 100 µm, D und E: 50 µm). Die Länge des Kathodenvorwiderstandes beträgt in den Serien B und D 1500 µm, in den Serien C und E nur die Hälfte dieses Wertes (750 µm). Bei allen Arrays des Typs S-RBO mit Kathodenbreiten > 25 µm ist der Vorwiderstand 25 µm breit. **Tabelle 4.3-5.** Zusammenstellung der bei Typ S-RBO MSE systematisch variierten geometrischen Parameter. – Es ergeben sich folgende Identitäten: B4 = F4, C4 = G4, D2 = H2, E2 = J2, G1 = F1 und J1 = H1, so dass die nicht halbfett hervorgehobenen Strukturen B4, C4, D2, E2, G1 und J1 nicht gefertigt wurden und lediglich zur Verdeutlichung der Systematik aufgeführt sind.

Array ^{a)}	Wafer	Kathoden- breite / μm	Anoden- breite / μm	Elektroden- abstand / μm	Vorwiderstand Länge / μm	Vorwiderstand Breite / μm	Anzahl der Elektroden
B1		•	•	25	· · ·	•	106
B2	П			50			82
B3	П	100	25	200	1500	25	36
B4	-			100			-
C1				25			106
C2	I			50			84
C3	I	100	25	200	750	25	36
C4	-			100			-
D1				25			148
D2	-			50			-
D3	Ш	50	25	200	1500	25	40
D4	Ш			100			66
E1				25			148
E2	-			50			-
E3	I	50	25	200	750	25	40
E4	I			100			68
F1	I	25			nicht vo	rhanden	76
F2	I	50			1500	25	68
F3	I	200	25	100	1500	25	44
F4	I	100			1500	25	58
G1	-	25			nicht vo	rhanden	-
G2	I	50			750	25	68
G3	I	200	25	100	750	25	44
G4	I	100			750	25	58
H1	Ι	25			nicht vorhanden		126
H2	I	50			1500	25	108
H3	I	200	25	50	1500	25	58
H4	I	100			1500	25	84
J1	-	25			nicht vo	rhanden	-
J2	Ι	50			750	25	108
J3	Ι	200	25	50	750	25	58
J4	Ι	100			750	25	84
K1	II	25			nicht vo	rhanden	138
K2	П	50	10	50	1500	25	116
K3	П	100			1500	25	88
L1		100		10			128
L2	П	100	25	400	1500	25	20
L3	П	400		100			30
M1	II			10			468
M2	Ш	b)	b)	25			270
M3	Ш	10 ^{by}	10 0)	50	nicht vo	rhanden	156
M4	П			100			84

^a Die von der Firma Bosch gefertigten MSE wurden unabhängig von Größe und Material fortlaufend nummeriert. Die Arrays A1 bis A4 sind vom Typ M-RBO. ^b Für M1–M4 gilt: Kathoden und Anoden sind nicht unterscheidbar (alle mit elliptischen Enden).

Abbildung 4.3-3. 4^{\prime}-Glassubstrat mit 36 Mikroelektroden-Arrays à 10 mm \times 10 mm vom Typ S-RBO. Hersteller: Robert Bosch GmbH, Stuttgart.

Für die Anoden wurde sowohl für die Serien B bis E wie auch für die Serien F bis J eine Breite von 25 μ m gewählt. In den Serien F–J wurde schließlich die Kathodenbreite im Bereich zwischen 25 μ m und 200 μ m variiert, während der Elektrodenabstand konstant bei 100 μ m (Serie F und G) bzw. 50 μ m (Serie H und J) liegt. Die Serien F und G bzw. H und J unterscheiden sich wiederum durch unterschiedlich lange Kathodenvorwiderstände.

Die Array-Typen S-RBO-K und S-RBO-M zeichnen sich gegenüber den anderen Arrays des Typs S-RBO durch schmalere Anoden mit einer Breite von nur noch 10 μ m aus. Bei den S-RBO-M MSE, die der Untersuchung von extrem feinen Elektrodenstrukturen dienten, beträgt auch die Breite der Kathoden nur noch 10 μ m (Elektrodenabstand: 10 μ m bis 100 μ m), wobei als zusätzliche Besonderheit zwischen beiden Elektrodenkämmen nicht unterschieden werden kann (alle Elektroden sind mit einem elliptischen Ende versehen). Schließlich sind mit den Typ S-RBO-L MSE Geometrien mit sehr breiten Kathoden (L3: 400 μ m) und sehr großen Elektrodenabständen (L2: 400 μ m) vertreten.

Als Träger wurde ein Glassubstrat mit einer Dicke von 1 mm verwendet. Die Elektroden bestehen aus einer aufgesputterten Titan-Wolfram-Schicht mit einer Dicke von etwa 0,5 μ m, die anschließend mit einer dünnen Goldschicht (ca. 0,1 μ m) überzogen wurde. Die Anzahl der Elektroden bewegt sich bei den Typ S-RBO MSE, die ausschließlich mit Gleichspannung betrieben wurden, zwischen 20 und 468.

4.3.5 Typ M-IMT (36 mm × 36 mm) und S-IMT (15 mm × 15 mm) – Institut für Mikrotechnik der TU Braunschweig

Da die Anzahl der verschiedenen Varianten der untersuchten Typ M-IMT (s. Abb. 4.3-4) und Typ S-IMT (s. Abb. 4.3-5) Mikrostrukturierten Elektrodensysteme über 100 beträgt, ist eine Zusammenstellung in tabellarischer Form, wie dies zuvor bei den anderen Typen gehandhabt wurde, an dieser Stelle nicht mehr sinnvoll. Somit werden die grundlegenden Parameter nur kurz zusammenfassend vorgestellt. Die Arrays wurden vom Institut für Mikro-technik der TU Braunschweig nach Designvorgaben gefertigt und ausschließlich mit hoch-frequenter Wechselspannung (13,56 MHz) betrieben.

Die beiden hier vorgestellten Array-Typen unterscheiden sich im Wesentlichen von den bisher beschriebenen MSE dadurch, dass die beiden Elektrodenkämme bezüglich der Abmessungen und der Geometrie jeweils identisch sind (vgl. Kapitel 4.1.4). Darüber hinaus wurde neben der Variation des Elektrodenabstandes (50-250 µm) und der Elektrodenbreite (100–2000 µm) nun auch die Kantenform der Elektroden variiert, so dass hier neben Elektroden mit glatten Kanten beispielsweise auch solche mit Sägezahn-Geometrie oder aber gewellte Elektroden zum Einsatz kamen (s. Abb. 4.1.4-1, S. 45). Außerdem konnte aufgrund der verbesserten Fertigungsmöglichkeiten neben Glassubstraten (mit einer typischen Dicke von 0,7 mm) verstärkt auch Al₂O₃-Keramik (Dicke: 0,63 mm, Dünnschichtgualität) als Trägermaterial verwendet werden. Zusätzlich wurden Untersuchungen mit "unterätzten" Strukturen durchgeführt. Dabei handelt es sich um Arrays, bei denen das Glassubstrat zwischen den Elektrodenelementen in einem (Plasma-)Ätzprozess bis zu einer Tiefe von etwa 10-15 µm entfernt wurde (vgl. Abb. 4.2-1 j, S. 50). Als Elektrodenmetall wurde nahezu ausschließlich Kupfer auf einer Chromhaftschicht (10-50 nm) verwendet. Kupfer bietet den Vorteil, dass die Schichtdicke der Elektroden durch galvanische Verstärkung erheblich erhöht werden kann. Auf diese Weise wurden – ausgehend von einer Schichtdicke von 2 µm – Arrays mit 15 µm, 20 µm und 35 µm dicken Kupferelektroden hergestellt, um dadurch zunehmend eine Optimierung der Standzeiten zu erreichen.

Abbildung 4.3-4. 36 mm \times 36 mm MSE vom Typ M-IMT. Hersteller: Institut für Mikrotechnik, TU Braunschweig. – Die Kupferelektroden sind zusätzlich mit einer ca. 100 nm dicken dielektrischen Schicht aus Al₂O₃ überzogen.

Abbildung 4.3-5. 15 mm × 15 mm MSE vom Typ S-IMT. Hersteller: Institut für Mikrotechnik der TU Braunschweig. – Elektrodenmaterial: Kupfer, Trägermaterial: Glas. Die Variation der Elektrodengeometrie wurde zunächst mit 36 mm \times 36 mm großen Arrays (Abb. 4.3-4) durchgeführt. Zum Abschluss der Arbeit sind schließlich überwiegend Arrays in der Größe 15 mm \times 15 mm (Abb. 4.3-5) untersucht worden. Diese haben gegenüber allen anderen Array-Typen ein etwas abweichendes Erscheinungsbild (breite Kontaktflächen; die Array-Oberfläche wird nicht vollständig als aktive Fläche zur Plasmaerzeugung genutzt), welches dadurch begründet ist, dass MSE in dieser Form später in Mikroreaktoren eingesetzt werden sollen.

Für den Betrieb mit 13,56-MHz-Hochfrequenz ist die Kapazität der Arrays von Bedeutung, da die dafür benötigten Anpassungsnetzwerke (vgl. Kap. 3.3.2) im Allgemeinen nur Kapazitäten von etwa 150–200 pF anpassen können und somit die Kapazität der Arrays nach Möglichkeit darunter liegen sollte. Charakteristische Kapazitäten für Typ S-IMT MSE bewegen sich im Bereich von 4–7 pF, die der Typ M-IMT MSE im Bereich von etwa 35 pF bis 90 pF.

5 Ergebnisse: MSE im Betrieb

5.1 MSE im DC-Betrieb

5.1.1 Typ L-MZD (50 mm × 50 mm) – Photronics MZD GmbH

5.1.1.1 Arbeitsdruckbereich und optisches Erscheinungsbild der Entladung

Mit den von der Fa. Photronics MZD GmbH gefertigten Strukturen wurden die ersten Untersuchungen zur Erzeugung von elektrischen Gasentladungen mit Mikrostrukturierten Elektrodensystemen durchgeführt. Hierbei ging es v. a. darum, einen ersten Überblick über die Betriebsparameter (im Gleichspannungsbetrieb) zu erhalten, so dass die Ergebnisse im Folgenden nur in einer kurzen, zusammenfassenden Form wiedergegeben werden sollen.

In Helium und Neon konnte eine die gesamte aktive Array-Fläche (40 mm × 30 mm) bedeckende, homogene Entladung bis zu einem Gasdruck von 40–50 mbar erzeugt werden (Angaben zu den elektrischen Betriebsparametern finden sich in Kapitel 5.1.1.2). In Argon, Krypton, Xenon, Stickstoff und Wasserdampf waren homogene, flächige Entladungen je nach Array und Gasart bis zu einem Druck von 5–15 mbar stabil zu betreiben. Eine signifikante Abhängigkeit von den geometrischen Parametern der Arrays war jeweils nicht feststellbar. In allen verwendeten Gasen bildet sich die Entladung mit einer typischen Dicke von etwa 0,5–1,5 mm direkt über der MSE-Oberfläche aus, wobei die Dicke mit steigendem Druck abnimmt. Bei Drücken oberhalb der oben genannten Werte nimmt die von der Entladung bedeckte Fläche mit steigendem Druck kontinuierlich ab. Der maximale Druck, bei dem mit Typ L-MZD MSE noch (punktförmige) Entladungen erzeugt werden konnten, lag bei 120– 140 mbar in Helium und Neon und bei 25–50 mbar in den übrigen untersuchten Gasen.

Die Entladung emittiert aufgrund der unterschiedlichen elektronischen Anregungsenergien der verwendeten Arbeitsgase und aufgrund der u. a. vom Gasdruck abhängigen kinetischen Energie der in der Entladung vorhandenen freien Elektronen Licht unterschiedlicher Wellenlängen: Helium: weiß-pink, Neon: orange-rot, Argon: violett, Krypton: grau-weiß, Xenon: grau-weiß, Wasserdampf: violett. Um Anhaltspunkte für die in den Entladungen auftretenden Elektronenenergien zu erhalten, wurden mit den genannten Gasen emissionsspektroskopische Untersuchungen durchgeführt [GEßNER 98]. Während dabei in Helium und Neon lediglich Emissionslinien, die den neutralen Atomen zuzuordnen sind, detektiert werden konnten, traten in den Emissionsspektren von Entladungen in Argon, Krypton und Xenon neben den Übergängen der neutralen Atome auch Übergänge der einfach positiv geladenen Ionen Ar⁺, Kr⁺ bzw. Xe⁺ auf. Nicht beobachtet wurden jedoch die zweifach positiv geladenen Spezies Ar²⁺, Kr²⁺ und Xe²⁺. Die Messungen zeigen, dass, je nach Gasart, Elektronenenergien von ca. 16–21 eV im Plasma erreicht werden können. Dabei handelt es sich nicht um die Angabe einer mittleren Elektronenenergie, sondern vielmehr um den hochenergetischen Anteil einer Elektronenenergie, sondern vielmehr um den

5.1.1.2 Elektrische Betriebsparameter und Strom-Spannungs-Charakteristik

Zunächst wurden die MSE mit beiden elektrischen Polaritäten betrieben. Das heißt, sowohl die schmaleren als auch die breiteren Elektroden wurden entweder als Anode oder als Kathode geschaltet. In Bezug auf die oben genannten erreichbaren maximalen Arbeitsdrücke und im Hinblick auf die Homogenität der Entladung (visuelle Beurteilung), konnten die besten Ergebnisse erreicht werden, wenn an die breiteren Elektroden eine negative Spannung angelegt wurde und die schmaleren auf Masse lagen. Die zur Erzeugung

der Entladungen an die Arrays angelegte Spannung lag dementsprechend zwischen – 1500 V und –2500 V, die Brennspannung in Abhängigkeit vom Array und vom verwendeten Arbeitsgas sowie dessen Druck in einem relativ engen Bereich zwischen –200 V und –500 V. Der fließende Entladungsstrom bewegte sich zwischen 0,1 mA und 2,0 mA, wobei der Strom mit einem entsprechenden externen Vorwiderstand (2 M Ω bzw. 2,8 M Ω) auf maximal 2,0 mA begrenzt wurde, um eine Zerstörung der Arrays durch zu starke Erhitzung zu vermeiden. Abbildung 5-1 zeigt typische *U-I*-Charakteristiken einer mit einem Typ L-MZD MSE erzeugten Heliumentladung am Beispiel der Struktur L-MZD-B3b bei vier verschiedenen Drücken zwischen 3 mbar und 9 mbar. $U_{\rm B}$ liegt zwischen –200 V und –310 V, wobei mit zunehmenden Druck eine Abnahme von $U_{\rm B}$ beobachtet wird (am Array anliegende Spannung: –2500 V). Die Entladungsstromstärke beträgt 1–1,8 mA. Alle vier dargestellten *U-I*-Charakteristiken weisen eine positive Steigung auf. Somit zeigt die Entladung hier die elektrische Charakteristik einer normalen Glimmentladung. Eine einfache Abschätzung der Leistungsaufnahme gemäß $P = U_{\rm B} \cdot I$ ergibt einen Wert zwischen 0,2 W und 0,6 W für das gesamte Array und entsprechend eine Flächenleistungsdichte von ca. 15–50 mW/cm².

Abbildung 5-1. Strom-Spannungs-Charakteristik einer Heliumentladung bei verschiedenen Drücken. – MEA Typ L-MZD-B3b (Chromelektroden auf Glasträger, 50 mm × 50 mm).

5.1.1.3 Bestimmung der Neutralgastemperatur mittels LIF

Die Temperatur *angeregter* Spezies in einem MSE-Plasma wurde zuvor beispielhaft über das Emissionsspektrum des OH-Radikals bestimmt [GEßNER 98], indem die Intensitäten zweier Bandenköpfe (0–0, 1–0) des $A^2\Sigma^+$ – $X^2\Pi$ -Systems über die bekannte BOLTZMANN-Gleichung

$$N_{1} / N_{0} = \left(e^{-E_{1}/kT}\right) / \left(e^{-E_{0}/kT}\right)$$
(5.1)

ausgewertet wurden, nach der die Anzahl der Atome, Moleküle usw. in einem Zustand N bei einer Temperatur T von der Energie E des Zustandes abhängt (k = BOLTZMANN-Konstante). Dabei ergab sich eine Temperatur von etwa 3400 K, die jedoch keine Aussage über die Neutralgastemperatur im Plasma erlaubt, da eine hierfür unabdingbare Voraussetzung – die Gleichgewichtsverteilung der Spezies über alle Zustände – aufgrund der geringen Lebensdauer der untersuchten OH-Zustände nicht erfüllt ist.

Die Methode der laserinduzierten Fluoreszenzspektroskopie erlaubt es dagegen, Moleküle im elektronischen Grundzustand unter Gleichgewichtsbedingungen zu detektieren. Tatsächlich zeigen LIF-Spektren des Stickstoffmonoxids (NO), dass die Temperatur der Neutralgasteilchen in einer mit MSE erzeugten Entladung maximal nur wenige 10 K über der Umgebungstemperatur, d. h. hier Raumtemperatur liegen. Die Ergebnisse der im Rahmen dieser Arbeit durchgeführten LIF-Messungen werden im Folgenden ausführlicher dargestellt.

Abbildung 5-2 zeigt das LIF-Spektrum des $A^2\Sigma^+ \leftarrow X^2\Pi_{1/2}$ -Übergangs des NO im Bereich von 225,6 nm bis 226,3 nm, welches mit einem Gasgemisch aus 500 ppm NO in Helium bei einem Druck von 9,7 mbar ohne elektrische Entladung gemessen wurde. Das unter sonst identischen Bedingungen gemessene Spektrum, jedoch jetzt mit einer gezündeten Gasentladung, ist in Abbildung 5-3 dargestellt. In beiden Spektren können alle beobachteten Linien Rotationsübergängen aus dem R₁-, R₂₁- bzw. Q₁-Zweig des $A^2\Sigma^+$ (v'= 0) $\leftarrow X^2\Pi_{1/2}$ (v''= 0)-Übergangs zugeordnet werden. Da die Übergänge des R₁-Zweiges besonders gut aufgelöst sind, werden sie zur Bestimmung der Gastemperatur gemäß

$$I \sim S_{J'J''} (2J''+1) \cdot e^{-E_{\rm rot}/kT}$$
(5.2)

herangezogen, wobei *I* die Intensität der einzelnen Linien des betrachteten R₁-Zweiges (unter Berücksichtigung der wellenlängenabhängigen Laserintensität) und E_{rot} die Rotationsenergie des unteren Zustandes J'' ist. $S_{J'J''}$ sind die Hönl-LONDON-Faktoren. Trägt man

$$\ln\left(\frac{I}{(2J''+1)}\right) \tag{5.3}$$

über der Rotationsenergie, die aus Literaturdaten berechnet werden kann, auf, so kann aus der Steigung der Ausgleichsgeraden die Temperatur *T* bestimmt werden (s. Abb. 5-4). Die aus der ersten Messung ohne Gasentladung ermittelte Temperatur *T* = (288 ± 15) K entspricht erwartungsgemäß der Raumtemperatur. Für die Messung mit Plasma ergibt sich ein nur um wenige 10 K höherer Wert: *T* = (316 ± 24) K. Berücksichtigt man, dass der Fehler in der gleichen Größenordnung liegt wie die Temperaturdifferenz selbst (ΔT = (28 ± 28) K), dann hat die Zündung des Plasmas keinen signifikanten Einfluss auf die Neutralgastemperatur.

Abbildung 5-2. NO-LIF-Spektrum ($A^2\Sigma^+$ (v' = 0) $\leftarrow X^2\Pi_{1/2}$ (v' = 0)-Übergang) *ohne* Gasentladung. – 500 ppm Stickstoffmonoxid in Helium bei einem Druck von 9,7 mbar, MEA Typ L-MZD-C3, Spannung PMT: 2 kV, Scangeschwindigkeit Farbstofflaser: 0,002 nm/s, Wiederholfrequenz Excimerlaser: 5 Hz, Laser-MEA-Abstand: 1 mm.

Abbildung 5-3. NO-LIF-Spektrum $(A^2\Sigma^+ (v'=0) \leftarrow X^2\Pi_{1/2} (v''=0)$ -Übergang) *mit* Gasentladung. – Brennspannung: –270 V, Entladungsstrom: 1,3 mA, am MEA angelegte Spannung: –2750 V. Sonstige Parameter wie Abb. 5-2.

Abbildung 5-4. BOLTZMANN-Plot für den R₁-Zweig der (0–0)-Bande des $A^2\Sigma^+ \leftarrow X^2\Pi_{1/2^-}$ Übergangs im NO (in Helium). – Auswertung der Spektren aus Abbildung 5-2 und 5-3. Die Temperatur wurde aus der Steigung (–1/*kT*) bestimmt. Die Abbildung zeigt zwei unterschiedliche Messungen: Eine ohne elektrische Gasentladung (Plasma aus) und eine unter sonst identischen Bedingungen (500 ppm NO in Helium, *p* = 9,7 mbar) mit Entladung (Plasma an). Die ermittelten Temperaturen liegen im Bereich der Raumtemperatur.

Neben Messungen in reinem Helium wurden auch Untersuchungen in Helium/Argon-Gemischen vorgenommen. Abbildung 5-5 zeigt den BOLTZMANN-Plot zweier unter identischen Bedingungen durchgeführten Messungen, jedoch einmal mit Entladung, das andere Mal ohne Entladung. Verwendet wurde ein He/Ar-Gemisch im Verhältnis 1:1 mit 500 ppm NO bei einem Druck von 4 mbar. Die Auswertung erfolgte erneut wie oben beschrieben unter Berücksichtigung der Laserleistung über den R₁-Zweig der (0–0)-Bande des $A^2\Sigma^+ \leftarrow X^2\Pi_{1/2^-}$ Übergangs im NO. Im Vergleich zu den Untersuchungen in reinem Helium lässt sich hier nun eine signifikante Temperaturdifferenz feststellen. Für die Messung ohne Entladung ergibt sich im Rahmen der Messgenauigkeit wieder der erwartete Temperaturwert nahe der Umgebungstemperatur: $T = (270 \pm 22)$ K. Nach Zündung der Entladung wurde nun jedoch eine um etwa 90 K höhere Temperatur $T = (361 \pm 37)$ K ermittelt. Als Endergebnis ist unter Berücksichtigung des Fehlers eine Temperaturdifferenz $\Delta T = (91 \pm 43)$ K anzugeben.

Abbildung 5-5. BOLTZMANN-Plot für den R₁-Zweig der (0–0)-Bande des $A^2\Sigma^+ \leftarrow X^2\Pi_{1/2^-}$ Übergangs im NO (in Helium/Argon). – Die Temperatur wurde aus der Steigung (–1/*kT*) bestimmt. Die Abbildung zeigt zwei unterschiedliche Messungen: Eine ohne elektrische Gasentladung (Plasma aus) und eine unter sonst identischen Bedingungen mit Entladung (Plasma an). 500 ppm NO in Helium/Argon (1:1), *p* = 4 mbar, MEA Typ L-MZD-C3, Brennspannung: –265 V, Entladungsstrom: 1,3 mA, am Array anliegende Spannung: -2750 V.

5.1.1.4 Lichtmikroskopaufnahmen nach Plasmabetrieb

Nach längerem Betrieb (mehrere Stunden) der Typ L-MZD MSE in Edelgasen wie Helium oder Neon bei Drücken von etwa 10–20 mbar ist unter dem Lichtmikroskop stellenweise ein Abtrag der nur 0,1 µm dicken Chromelektroden durch Sputterprozesse festzustellen. Dieser Abtrag erfolgt jedoch in charakteristischer Weise. Die Abbildungen 5-6 a–c zeigen beispielsweise die Enden der als Kathoden geschalteten, breiteren Elektroden. Teilweise ist die Chromschicht im Endbereich vollständig abgetragen (Abb. 5-6 a), teilweise ergeben sich elliptische Formen (Abb. 5-6 b, c), wobei hier das Radienverhältnis größer ist als das der ursprünglich vorhandenen Kathodenenden. Abbildung 5-6 d zeigt dagegen einen Bereich im Zentrum eines Arrays. Hier sind von den breiten Kathoden nur zwei dünne Stege im Randbereich verblieben.

Abbildung 5-6. Lichtmikroskopaufnahmen von Typ L-MZD MEA nach längerem Plasmabetrieb in Edelgasen (v. a. Helium). – a) und b) L-MZD-B3b (Kathodenbreite: 400 μ m, Anodenbreite: 12 μ m, Elektrodenabstand: 154 μ m); c) und d) L-MZD-B2b (Kathodenbreite: 200 μ m, Anodenbreite: 12 μ m, Elektrodenabstand: 254 μ m).

5.1.2 Typ L-RH (50 mm × 50 mm) – Radeberger Hybridelektronik GmbH

Die Elektroden-Arrays vom Typ L-RH (Glasträger, TiW/Au-Elektroden) wurden in Helium bei Drücken von 1–20 mbar im Gleichspannungsbetrieb getestet, wobei die breiteren Elektroden als Kathode geschaltet wurden. Dabei gelang es mit keinem der Arrays eine flächige Entladung zu zünden. Bei den Typen A1, A2 und A3 kam es im Bereich der Kathodenenden zu punktförmigen Entladungen, die sehr schnell zu einer Beschädigung der Elektroden führten. Abbildung 5-7 a zeigt dies in leichterer Ausprägung anhand der Struktur A2. Bei höheren Spannungen bzw. Strömen erfolgte eine massive Beschädigung der Arrays, die keinen weiteren Plasmabetrieb mehr zuließ. Einen solchen Schaden zeigt Abbildung 5-7 b anhand des Typs A1. Mit der Struktur A4 ließ sich schließlich in keiner Form eine Entladung zünden.

Bei einer Überprüfung der Typ L-RH MSE unter dem Lichtmikroskop konnten keine offensichtlichen Fertigungsfehler, wie z. B. Kurzschlüsse oder unsaubere Kanten, entdeckt werden. Ungeeignete Geometrieparameter scheiden als Ursache für das unbefriedigende Verhalten der in Radeberg gefertigten MSE weitestgehend aus, da diese praktisch mit denen der Typ L-MZD MSE übereinstimmen, und die L-MZD MSE (vgl. Kap. 5.1.1) unter identischen Bedingungen erfolgreich zur Erzeugung von Gasentladungen eingesetzt werden konnten.

Abbildung 5-7. Lichtmikroskopaufnahmen von MEA des Typs L-RH. – Bei ersten Tests in Helium bei Gasdrücken im Bereich von 1–20 mbar traten leichte (a), bei höheren Spannungen massive (b) Schädigungen der Arrays im Bereich der Kathodenenden auf. a) L-RH-A2; b) L-RH-A1.

5.1.3 Typ M-RBO (30 mm × 30 mm) – Robert Bosch GmbH

Für die auf Siliziumbasis gefertigten Typ M-RBO MSE mit TiW/Au-Elektrodensystem wurde ausschließlich Helium als Arbeitsgas eingesetzt. Zum Betrieb der MSE wurde an der Hochspannungsquelle eine Spannung zwischen –500 V und –2500 V vorgegeben. Unter Verwendung eines externen 1,96-M Ω -Vorwiderstandes stellte sich dabei nach Zündung der Entladung ein Stromfluss mit einer Stärke zwischen 0,05 mA und 1,1 mA ein. Als Brennspannung $U_{\rm B}$ des Plasmas wurden Werte zwischen –250 V und –500 V gemessen.

Mit dem Typ M-RBO-A1 ließ sich bei einer Betriebsspannung U_{HV} von –1500 V ein homogenes, die gesamte aktive Array-Oberfläche (750 mm²) bedeckendes ("flächiges") Plasma bis zu einem Druck von 4,8 mbar stabil betreiben. Mit einer Spannung U_{HV} = –2500 V stieg der maximal erreichbare Betriebsdruck für eine flächige Entladung geringfügig auf 6,7 mbar an. Wurde der Druck bei konstanter Spannung über die angegebenen Grenzen hinaus erhöht, so setzte analog zu den Typ L-MZD MSE (s. Kapitel 5.1.1) auch hier eine kontinuierliche Verminderung der Plasmaausdehnung ein. Der maximale Betriebsdruck, bei dem ein Plasma gezündet werden konnte, welches noch etwa 10 % der aktiven Array-Oberfläche bedeckte, lag bei 16 mbar (U_{HV} = –1500 V) bzw. 22,6 mbar (U_{HV} = –2500 V).

Neben der Ermittlung der angegebenen Druckgrenzen (Tab. 5-1) wurden mit dem Array A1 zusätzlich auch einige Messungen hinsichtlich der aufzubringenden Zündspannung durchgeführt. So konnte ein flächiges, jedoch äußerst schwach leuchtendes Plasma z. B. bei einem Druck von 4 mbar bereits durch Anlegen einer Spannung von lediglich –500 V an das Array gezündet werden. Dabei floss bei einer Brennspannung von –380 V ein sehr geringer Entladungsstrom von 60 μ A. Zur Ermittlung der *U-I*-Charakteristik des Arrays Typ A1 wurde an der Hochspannungsquelle der Bereich von –1000 V bis –2500 V in 100-V-Schritten durchfahren (s. Abb. 5-8). Während die Brennspannung im Bereich zwischen 0,3 mA und 0,4 mA etwa –360 V beträgt, fällt sie oberhalb von 0,4 mA auf einen Wert von –325 V ab, um dann im weiteren Verlauf wieder auf –340 V anzusteigen. Obwohl nach längerem Plasmabetrieb bei visueller Betrachtung kein Abtrag der nur ca. 80 nm dicken Goldschicht feststellbar war und auch sonst keinerlei Beschädigungen – etwa durch Überschläge hervorgerufen – zu beobachten waren, ließ sich mit dem Array M-RBO-A1 schließlich kein Plasma mehr zünden.

Abbildung 5-8. Strom-Spannungs-Charakteristik von Heliumentladungen (p = 4 mbar). – Mikroelektroden-Arrays vom Typ M-RBO-A1 bzw. M-RBO-A3.

Mit dem Mikroelektroden-Array M-RBO-A2 gelang es nicht, eine flächige Gasentladung zu erzeugen. Bei geringen Betriebsspannungen (–500 V bis –700 V) und Drücken im Bereich von 2–4 mbar waren lediglich einige punktförmige Entladungserscheinungen zu beobachten, die sich bei Erhöhung des Drucks bzw. der Betriebsspannung zu Überschlägen entwickelten. Darüber hinaus wurde im Vergleich zu den Arrays A1, A3 und A4 trotz der Strombegrenzung ein vermehrtes Durchbrennen der Vorwiderstände an den Kathoden beobachtet.

Mit dem Array M-RBO-A3 ließ sich zunächst bei einem Druck von 4,3 mbar mit einer Spannung von –700 V eine stabile, flächige Gasentladung erzeugen ($U_B = -360$ V, I = 0,17 mA). Als an der Hochspannungsversorgung die Betriebsspannung erhöht wurde, konnte anschließend unterhalb des zuletzt eingestellten Wertes in einem erneuten Versuch kein Plasma mehr gezündet werden, d. h., die Zündspannung musste kontinuierlich höher gewählt werden. Nach Aufnahme einer *U-I*-Charakteristik bei 4,3 mbar (siehe Abbildung 5-8) ließ sich schließlich überhaupt keine Entladung mehr zünden, so dass der Arbeitsdruckbereich für dieses Array nicht mehr ermittelt werden konnte. Der für das *U-I*-Diagramm an der Hochspannungsquelle durchfahrene Spannungsbereich erstreckte sich von –1000 V bis – 2100 V, die Brennspannung betrug in diesem Bereich nahezu konstant –350 V, während ein Strom von 0,35–0,9 mA floss. Bei einer Spannung $U_{HV} = -2200$ V ($U_B \approx -320$ V, $I \approx 1,1$ mA) wurde das Plasma instabil.

Das MSE A4 funktionierte von den vier untersuchten Geometrievarianten des Typs M-RBO am zuverlässigsten und hiermit ließ sich – unabhängig von der angelegten Spannung – ein flächiges Plasma bis ca. 7,5 mbar stabil betreiben. Der maximale Druck, bei dem noch eine Entladung mit einer Ausdehnung von 10 % der aktiven Fläche gezündet werden konnte, betrug 24 mbar mit U_{HV} = –1500 V bzw. 22 mbar mit U_{HV} = –2500 V. Das Plasma ließ sich
auch nach mehrmaligem (4- bis 5-mal) und längerem Betrieb (ca. 1 h insgesamt) noch problemlos zünden. Allerdings war nach dieser Betriebsdauer in einigen Bereichen des Arrays ein merklicher Abtrag der Goldschicht festzustellen. Hinsichtlich der minimal aufzubringenden Zündspannung wurden ähnliche Ergebnisse wie für die Arrays A1 und A3 erhalten: Ein flächiges Plasma ließ sich bei einem Helium-Druck von 4 mbar bereits durch Anlegen einer Spannung von –600 V zünden und stabil betreiben ($U_{\rm B}$ = –356 V, I = 0,13 mA).

Zusammenfassend ergibt sich aus den oben angegebenen Beobachtungen, dass sich mit den auf Siliziumbasis gefertigten Elektroden-Arrays vom Typ M-RBO in Helium stabile, flächige Entladungen im Bereich zwischen 4 mbar und 8 mbar erzeugen lassen, während der maximal erreichbare Betriebsdruck bei 23–24 mbar liegt. Um den Entladungsstrom nicht wesentlich über 1 mA ansteigen zu lassen und damit einer Beschädigung der Arrays durch Überschläge vorzubeugen, wurde die angelegte Spannung auf –2500 V begrenzt, zumal bei Spannungen oberhalb von –2200 V zunehmend Instabilitäten im Plasma sichtbar wurden. Zwischen den maximal erreichbaren Betriebsdrücken und den zugrunde liegenden Geometrien, d. h. Kathodenbreite und Elektrodenabstand, kann keine Relation hergestellt werden, da die entsprechenden Daten nicht für alle vier Typ M-RBO MSE ermittelt werden konnten. Weil aber die für die Arrays A1 und A4 vorliegenden Werte keine signifikanten Unterschiede zeigen und diese beiden Arrays die Eckpunkte der untersuchten Viererserie darstellen – A1 mit den breitesten Kathoden und dem geringsten Elektrodenabstand und A4 mit den schmalsten Kathoden und dem größten Abstand – ist zu erwarten, dass für die Arrays A2 und A3 ähnliche Ergebnisse erhalten werden.

d

Abbildung 5-9. REM-Aufnahmen von MEA des Typs M-RBO. – Die Arrays sind teilweise im Bereich der Kathoden-vorwiderstände (a, c und e) bzw. an den Kathodenenden (b, d) durch den Plasmabetrieb beschädigt. b) und c) M-RBO-A2; a), d) und e) M-RBO-A4. Abbildung 5-9 zeigt beispielhaft einige REM-Aufnahmen der M-RBO MSE nach dem Plasmabetrieb. Die Arrays sind vor allem im Bereich der Kathodenvorwiderstände (Abb. 5-9 a, c, e) bzw. an den Kathodenenden (Abb. 5-9 b, d) beschädigt. Im Bereich der Kathodenenden ist dies auf Überschläge zurückzuführen, während die Kathodenvorwiderstände aufgrund einer zu hohen Stromstärke bzw. der damit verbundenen Wärmeverluste schmelzen.

Array		A1			A2 ^{b)}			A3 ^{c)}			A 4	
Fall ^{a)}	Ι	II	111	I			Ι			Ι	II	
– <i>U</i> _{HV} / V	1500	1500	1500						1500	1500	1500	
<i>p</i> / mbar	≤4,8	≤8	≤ 16	nicht bestimmt						≤7,2	\leq	≤ 24
<i>–U</i> в / V	345	352	398						276	255	356	
<i>I</i> / mA	0,59	0,59	0,56							0,63	0,64	0,56
– <i>U</i> _{HV} / V	2500	2500	2500							2500	2500	2500
<i>p</i> / mbar	≤ 6,7	≤ 12	\leq	nicht bestimmt \leq 7,2 362 3						≤7,2	\leq	\leq
<i>–U</i> в / V	345	364	499							347	410	
<i>I</i> / mA	1,11	1,11	1,04							1,11	1,12	1,06

Tabelle 5-1. Zusammenstellung einiger Betriebsparameter der Typ M-RBO MSE.

^a Es wird der Arbeitsdruck mit den entsprechenden elektrischen Parametern angegeben, bei dem das Plasma die aktive Fläche des Arrays vollständig bedeckt (Fall I), das Plasma 50 % der aktiven Array-Oberfläche bedeckt (Fall II) bzw. bei dem noch ein Plasma mit einer Ausdehnung von ca. 10 % der aktiven Fläche betrieben werden kann (Fall III). ^b Mit dem Array A2 ließ sich kein Plasma zünden, es traten lediglich Überschläge auf. ^c Nach der Aufnahme einer Strom-Spannungs-Charakteristik ließ sich mit dem Array A3 kein Plasma mehr zünden.

5.1.4 Typ S-RBO (10 mm \times 10 mm) – Robert Bosch GmbH

5.1.4.1 Arbeitsdruckbereich

Der Arbeitsdruckbereich der 100 mm² großen Typ S-RBO Mikrostrukturierten Elektrodensysteme(TiW/Au-Elektroden, Glassubstrat) wurde im Gleichspannungsbetrieb für Helium bestimmt. In allen durchgeführten Messungen wurde den Arrays ein externer Ballastwiderstand von 1,96 M Ω bzw. 2,81 M Ω vorgeschaltet. Grundsätzlich wurden auch hier wiederum zwei Druckobergrenzen bestimmt: zum einen jener Druck, bis zu dem sich eine Gasentladung homogen auf der gesamten aktiven Array-Oberfläche (10 mm × 6 mm) betreiben lässt ($p_{flächig}$), zum anderen der maximal erreichbare Druck (p_{max}), bei dem sich ein homogenes Plasma gerade noch in einem Teilbereich des Arrays (ca. ¼ der aktiven Fläche) ausbildet. Die Ergebnisse weisen eine gute Reproduzierbarkeit auf, dennoch ist anzumerken, dass im Rahmen dieser Arbeit von den einzelnen Array-Ausführungen jeweils nur zwei Exemplare zur Verfügung standen. Im Folgenden müssen zwei Messreihen (Wafer I und II) voneinander abgegrenzt werden.

Bei den Messungen, die mit den auf Wafer I gefertigten Arrays (s. Tabelle 4.3-5, Kap. 4.3.4) durchgeführt wurden, wurde mit einer variablen Betriebsspannung U_{HV} zwischen –600 V und

-1300 V (im Einzelfall bis zu –1500 V) gearbeitet. Die dabei auftretenden Ströme bewegten sich typischerweise im Bereich von 0,1 mA bis 0,3 mA. Die in Tabelle 5-2 zusammengefassten Druckgrenzen sind nach folgender Vorgehensweise und somit bei unterschiedlichen Betriebsspannungen bestimmt worden: Beginnend mit $U_{HV} = -600$ V wurde zunächst der Druck so lange erhöht, bis eine Verkleinerung der Plasmaausdehung einsetzte. Im Anschluss daran wurde versucht, das Plasma bei dem auf diese Weise erreichten Druck mit einer um 100 V erhöhten Spannung erneut flächig zu betreiben, um dann ggf. eine weitere Druckerhöhung vornehmen zu können. Dieser Vorgang wurde so lange wiederholt, bis eine weitere Steigerung des Drucks bzw. eine Erhöhung der Betriebsspannung zum Übergang der schließlich nur noch teilweise auf dem Array ausgedehnten homogenen Entladung in eine filamentartige Form führte. Daraus ergibt sich dann der in Tabelle 5-2 als maximaler Betriebsdruck (p_{max}) angegebene Wert.

Die Ergebnisse dieser ersten Messreihe zeigen insgesamt ein recht einheitliches Bild: Flächige Entladungen ließen sich mit der Mehrzahl der Arrays im Druckbereich zwischen 20 mbar und ca. 40 mbar mit einer Spannung zwischen –600 V und –1000 V stabil betreiben. In einigen wenigen Fällen war auch eine höhere Betriebsspannung (bis zu – 1300 V) realisierbar, ohne dass dies zum Auftreten von Überschlägen bzw. zu einer Filamentierung der Entladungen führte. Die mit 35 mbar und 37 mbar höchsten Druckwerte konnten mit den Arrays C3, H2 und J3 erreicht werden, während die Varianten H1, H3 und J2 den Betrieb flächiger Entladungen nur bis zu einem Druck von 20 mbar erlaubten. Für alle anderen Arrays dieses Wafers ergaben sich Werte von 25 mbar bzw. 30 mbar. Wurde das Heliumplasma bei einem Druck von 10 mbar mit einer Spannung von –600 V betrieben, so stellte sich nach einer Brenndauer von 60 s bei allen Arrays eine konstante Stromstärke zwischen 100 μ A und 120 μ A ein. Unter diesen Bedingungen konnten die Entladungen stabil über einen langen Zeitraum (Versuchsende nach 1 h) aufrechterhalten werden.

Array	KB / μm	AB / μm	EA / μm	VWL / μm	VWB / μm	p _{flächig} / mbar	– <i>U</i> _{HV} / V	p _{max} / mbar	– <i>U</i> _{нv} / V	/ / μA ^{a)}
C2	100	05	50	750	25	30	1000	75	1000	112
C3	100	25	200	750	25	37	1200	60	1200	114
E3	50	25	200	750	25	30	1000	50	1000	110
E4	50	25	100	750	25	30	1000	75	1000	110
F1	25			nicht v	orhan-	30	1000	70	1000	108
F2	50	25	100	1500	25	30	1000	40	1000	106
F3	200	25	100	1500	25	30	1000	80	1000	104
F4	100			1500	25	25	600	55	1000	102
G2	50			750	25	30	1000	55	1000	109
G3	200	25	100			30	1000	30	1200	103
G4	100					25	1000	70	1000	111
H1	25			nicht	t vor-	20	600	60	1000	111
H2	50	05	50	1500	25	35	1300	40	1300	117
H3	200	25	50	1500	25	20	600	70	1500	121
H4	100			1500	25	30	600	70	1000	117
J2	50					20	600	35	1000	114
J3	200	25	50	750	25	35	600	85	1000	122
J4	100					30	1000	70	1000	117

Tabelle 5-2. Zusammenstellung der Druckgrenzen sowie der entsprechenden Betriebsspannungen für MSE vom Typ S-RBO (Wafer I). – KB: Kathodenbreite, AB: Anodenbreite, EA: Elektrodenabstand, VWL: Länge Vorwiderstand, VWB: Breite Vorwiderstand, U_{HV} : Betriebsspannung. R_{ext} = 2,81 M Ω .

^a Entladungsstrom nach einer Brenndauer von 60 s bei einem Gasdruck von 10 mbar Helium und einer Betriebsspannung U_{HV} von –600 V.

Betrachtet man die Betriebsdrücke für homogene Entladungen, deren Ausdehnung sich nur über einen Teilbereich der Array-Oberfläche erstreckt, so wird wiederum mit dem Array J3 der höchste Wert (85 mbar) erreicht. Ähnlich hohe Drücke (75–80 mbar) lassen sich mit den Strukturen C2, E4 und F3 realisieren. Die zuvor genannten Arrays C3 und H2 erlauben dagegen nur eine Druckerhöhung auf 60 mbar bzw. 40 mbar, bevor es zur Ausbildung von Filamenten kommt. Ebenfalls im Bereich kleinerer Drücke (35–40 mbar) anzusiedeln sind die Varianten F2 und J2. Mit den meisten Arrays konnte ein Druck zwischen 55 mbar und 70 mbar erreicht werden. Eine Ausnahme stellt das Array G3 dar. Hier konnte zwar bis 30 mbar eine flächige Entladung erzeugt werden, eine weitere Erhöhung des Drucks führte jedoch nicht wie bei den anderen Geometrien zu einer Verkleinerung der Entladungsausdehnung, sondern vielmehr direkt zu einer verstärkten Ausbildung von filamentartigen Entladungen.

Bei einer versuchsweisen Erhöhung der an den Elektroden-Arrays anliegenden Spannung auf bis zu –3000 V traten dann ausschließlich filamentartige Entladungen auf, wobei einzelne Entladungskanäle noch bei Drücken bis zu etwa 500 mbar beobachtbar waren. Allerdings führte die lokale Begrenzung des Plasmas und der damit verbundene hohe Stromfluss (ca. 0,8 mA bis 1 mA) in nahezu allen Fällen zu einer Beschädigung der MSE. Wesentlicher Hintergrund der mit den Typ S-RBO durchgeführten Untersuchungen war die Klärung der Frage, ob und inwieweit sich Korrelationen zwischen den variierten Abmessungen (Elektrodenabstand, Kathodenbreite, Länge des Vorwiderstandes) und den erreichbaren Betriebsdrücken herstellen lassen. Hinsichtlich des Wafers I werden dazu die Ergebnisse für die Array-Typen F1–F4 und H1–H4 in Abbildung 5-10 gegenübergestellt. Bei diesen Arrays beträgt die Anodenbreite 25 μ m, die Länge des Vorwiderstandes 1500 μ m und dessen Breite 25 μ m (bei F1 und H1 entfällt der Vorwiderstand). In beiden Serien wurde bei konstantem Elektrodenabstand die Breite der Kathoden ausgehend von 25 μ m jeweils schrittweise verdoppelt, wobei weiterhin der Elektrodenabstand der Serie F (100 μ m) doppelt so groß gewählt war als jener der Serie H (50 μ m). Abbildung 5-10 zeigt, dass kein eindeutiger Zusammenhang zwischen den variierten Parametern Elektrodenabstand bzw. Kathodenbreite und den möglichen Arbeitsdrücken hergestellt werden kann. Die niedrigen maximal erreichbaren Drücke bei den Arrays F2 und H2 sind jedoch sehr auffällig.

Für die MSE vom Typ S-RBO des Wafers II wurde ebenfalls jeweils der maximale Gasdruck, bei dem ein Heliumplasma noch flächig über das ganze Array brennt, bestimmt. Im Gegensatz zur Messreihe mit den Arrays des Wafers I wurde jedoch in diesem Fall eine Gleichspannung von einheitlich –500 V angelegt. Bei dieser relativ moderaten Betriebsspannung war eine weitaus geringer ausgeprägte Neigung zu filamentären Entladungen festzustellen. Somit folgte der bei einer Erhöhung des Drucks zunächst wiederum beobachtbaren Verkleinerung der Plasmaausdehnung in der Regel unmittelbar das Erlöschen der Entladung. Dieser Druck, bei dem sich gerade noch ein Plasma betreiben lässt, wird in Tabelle 5-3 als p_{max} angegeben. Aufgrund der geringeren Betriebsspannung liegen die in dieser zweiten Messreihe ermittelten Drücke – insbesondere p_{max} – naturgemäß unter denen der ersten Reihe.

Abbildung 5-10. Mit den Mikroelektroden-Arrays F1–F4 und H1–H4 vom Typ S-RBO realisierte Betriebsdrücke. – p_{max} : die Entladung bedeckt mindestens ¼ der aktiven Array-Oberfläche, $p_{flächig}$: die Entladung bedeckt die gesamte Array-Oberfläche.

Ergänzend wurde für jedes Elektroden-Array des Wafers II die minimal aufzubringende Spannung $U_{HV, min}$ mit der sich gerade ein Plasma zünden lässt bei einem konstanten Gasdruck von 10 mbar Helium bestimmt, indem die Spannung ausgehend von –100 V in 100-V-Schritten sukzessive erhöht wurde. Diese Messungen sollten zu einer groben Abschätzung dienen, inwiefern das PASCHEN-Gesetz (GI. 2.2), gemäß dem sich bei konstantem Druck bei einer Veränderung des Elektrodenabstandes auch die zur Zündung einer Entladung benötigte Spannung verändert, bei Elektrodenabständen im Mikrometerbereich eine Bedeutung hat.

Den Ergebnissen aus den Messungen mit den Arrays des Wafers I folgend und durch die Verwendung einer konstanten Betriebsspannung erwartungsgemäß eher noch verstärkt, zeigt sich auch bei den MSE des Wafers II ein sehr einheitliches Bild (vgl. Tabelle 5-3). Mit 16 der 18 untersuchten Arrays ließ sich mit einer Spannung von –500 V ein flächiges Plasma bis zu einem Druck von 20–25 mbar erzeugen. Lediglich mit den Strukturen B3 (18 mbar) und M4 (15 mbar) konnte die 20-mbar-Grenze nicht ganz erreicht werden. Ähnlich verhält es sich mit dem maximalen Betriebsdruck. Dieser liegt für 14 der 18 MSE im Bereich zwischen 26 mbar und 34 mbar. Die Arrays M2 und L2 ließen nur einen Druck von 23 mbar bzw. 24 mbar zu, wohingegen mit der Geometrie D3 ein Betrieb bis zu 36 mbar möglich war.

Tabelle 5-3. Zusammenstellung der Druckgrenzen sowie der entsprechenden Betriebsspannungen für MSE vom Typ S-RBO (Wafer II). – KB: Kathodenbreite, AB: Anodenbreite, EA: Elektrodenabstand, VWL: Länge Vorwiderstand, VWB: Breite Vorwiderstand, U_{HV} : Betriebsspannung. R_{ext} = 1,96 M Ω .

Array	KB / μm	ΑΒ / μm	EA / μm	VWL / μm	VWB / μm	<i>P</i> _{flächig} ∕ mbar _{a)}	p _{max} / mbar _{a)}	<i>Ι</i> / μΑ ^{ь)}	<i>- U</i> _{HV, min} / V
B1			25			23	33	69	400
B2	100	25	50	1500	25	22	31	74	500
B 3			200			18	30	85	400
C1	100	25	25	750	25	24	33	96	400
D1			25			22	34	90	400
D3	50	25	200	1500	25	22	36	69	400
D4			100			20	26	56	400
E1	50	25	25	750	25	24	32	88	400
K1	25			nicht vo	rhanden	22	31	87	400
K2	50	10	50	1500	25	24	32	88	400
K3	100			1500	25	25	32	95	300
L1	100		10			21	26	98	400
L2	100	25	400	1500	25	22	24	46	400
L3	400		100			24	27	95	400
M1			10			24	33	95	300
M2	10	10	25	nicht vo	rhandan	20	23	91	400
M3	10	10	50	HICHL VO	manuen	22	26	90	300
M4			100			15	28	101	400

^a Betriebsspannung U_{HV} = -500 V. ^b Entladungsstrom nach einer Brenndauer von 60 s bei einem Gasdruck von 10 mbar Helium und einer Betriebsspannung U_{HV} von -500 V.

Die Ergebnisse für die Arrays des Wafers II zeigen sehr deutlich, dass der Elektrodenabstand keinen signifikanten Einfluss auf den (maximal) erreichbaren Gasdruck hat. Zur Veranschaulichung sind in Abbildung 5-11 beispielsweise die für die Arrays der Serien B, D und L ermittelten Daten graphisch dargestellt, wobei den beiden unteren Graphen ($p_{flächig}$) eine größere Bedeutung zugemessen werden sollte, da sich hier bei visueller Betrachtung der Entladung verlässlich beurteilen ließ, ob das gewählte Kriterium "flächig" erfüllt war. Die Anodenbreite (25 µm) sowie die Breite (25 µm) und Länge (1500 µm) des Vorwiderstandes war bei allen Arrays identisch, während der Elektrodenabstand in einem weiten Bereich (10– 400 µm) variiert wurde. Besonders hervorzuheben ist in diesem Zusammenhang, dass für den minimalen (10 µm) und den maximalen Elektrodenabstand (400 µm) nahezu die gleiche Obergrenze für den Arbeitsdruck ermittelt wurde. Abbildung 5-11 verdeutlicht auch noch einmal, dass die Kathodenbreite keinen Einfluss auf den Betriebsdruck ausübt: Bei den Arrays B1, B2, B3, L1 und L2 betrug sie 100 µm, bei den Arrays der D-Serie nur 50 µm.

Abbildung 5-11. Mit Mikroelektroden-Arrays der Serien B, D und L vom Typ S-RBO realisierte Betriebsdrücke. – p_{max} : es lässt sich gerade noch eine Entladung betreiben, $p_{flachig}$: die Entladung bedeckt die gesamte Array-Oberfläche.

Analoge Betrachtungen lassen sich auch bezüglich der Länge des Vorwiderstands anstellen. So hat das Array B1 einen doppelt so langen Vorwiderstand wie Array C1, die bestimmten Druckwerte sind jedoch praktisch identisch. Ebenso verhält es sich mit der Anodenbreite: Obwohl diese beim Array K3 mit 10 μ m nur 60 % der Breite der Anoden des MSE B2 beträgt (bei sonst identischen Abmessungen), sind die ermittelten Betriebsdrücke sehr ähnlich.

Als Zündspannung für eine Heliumentladung bei einem Druck von 10 mbar kann für die Elektroden-Arrays des Wafers II ein von den variierten Geometrieparametern unabhängiger Wert von –300 V bis –500 V angegeben werden. Nach einer Brenndauer von 60 s stellt sich bei der Mehrzahl der Arrays bei einer Betriebsspannung von –500 V ein Stromfluss von etwa 60 μ A bis 100 μ A ein. Eine Ausnahme bildet hierbei das Array L2, welches sich durch relativ breite Kathoden (400 μ m) auszeichnet, mit nur 46 μ A. Damit berechnet sich die Leistungsaufnahme der Arrays für eine Heliumentladung bei 10 mbar zu etwa 25–50 mW, entsprechend einer Flächenleistungsdichte von ca. 40–80 mW/cm².

5.1.4.2 Elektrische Betriebsparameter und Strom-Spannungs-Charakteristik

Die statische Strom-Spannungs-Charakteristik von Gasentladungen in den drei Edelgasen Helium, Neon und Argon sowie in Stickstoff ist beispielhaft für die Arrays S-RBO-C1 und S-RBO-L1 bei jeweils zwei Arbeitsdrücken (10 mbar und 25 mbar) bestimmt worden (siehe Abbildungen 5-12 bis 5-14). Dazu wurde die Betriebsspannung U_{HV} der MSE ausgehend von –50 V in 50-V-Schritten bis zu einem Wert von –1200 V durchfahren. Die Arrays unterscheiden sich hinsichtlich des Elektrodenabstandes (C1: 25 µm, L1: 10 µm) und in der Länge des Vorwiderstandes der Kathoden (C1: 750 µm, L1: 1500 µm). Die bei einem Gasdruck von 10 mbar erhaltenen Entladungscharakteristiken zeigen die Abbildungen 5-12 (Array C1) bzw. 5-13 (Array L1).

Für das Array C1 wird bei einem Druck von 10 mbar in Neon, Argon und Stickstoff eine positive *U-I*-Charakteristik der Entladung beobachtet, d. h., die Brennspannung steigt mit größer werdendem Strom ebenfalls an. Die niedrigste Brennspannung stellt sich dabei in Neon ein, wo sie von –220 V bei einem Strom von etwa 80 μ A auf –240 V bei einem Strom von 350 μ A ansteigt. Hier ist gleichzeitig die positive Charakteristik am schwächsten ausgeprägt. Im Vergleich dazu wurden in Argon bei Stromstärken im Bereich von 65–280 μ A für U_B deutlich höhere Werte von etwa –370 V bis –410 V ermittelt, wobei zudem der Anstieg deutlich steiler erfolgt. Mit einer Brennspannung zwischen –450 V und –470 V bei Stromstärken zwischen 110 μ A und 260 μ A wurden schließlich in Stickstoff die höchsten Werten gemessen. Die Brennspannung der Heliumentladung bei Strömen zwischen 65 μ A und 340 μ A liegt hingegen mit –260 V bis –270 V nur geringfügig über den in Neon bestimmten Werten. Im Gegensatz zur Neonentladung wird hier jedoch keine positive *U-I*-Charakteristik beobachtet, sondern vielmehr bleibt die Spannung über den gesamten Messbereich nahezu konstant.

Abbildung 5-12. Strom-Spannungs-Charakteristik von Entladungen in Helium, Neon, Argon und Stickstoff bei einem Gasdruck von 10 mbar. – MEA Typ S-RBO-C1, R_{ext} = 1,96 M Ω .

Beim Array L1 wird bei einem Gasdruck von 10 mbar für die Neon- und Stickstoffentladung ebenfalls eine positive *U-I*-Charakteristik beobachtet, nicht jedoch für die Argonentladung (s. Abb. 5-13). Diese zeigt eine nahezu konstante Brennspannung von –265 V bis –275 V im Bereich von 85 μ A bis 295 μ A. Im Gegensatz zum Array C1 ist hier aber bei der Heliumentladung ein deutlicher Anstieg der Brennspannung von –240 V bei 75 μ A auf etwa –280 V bei 330 μ A zu verzeichnen. In den drei untersuchten Edelgasen übersteigt die Brennspannung der Entladung im gesamten Messbereich einen Wert von –285 V nicht. Damit liegen die gemessenen Spannungswerte für die Argonentladung beim Array L1 um ca. 100 V bis 140 V unter den für das Array C1 ermittelten Werten, während sich in Neon im Stromstärkebereich von 70 μ A bis 350 μ A abermals eine Brennspannung zwischen –230 V und –240 V einstellt. Für die Stickstoffentladung wurden im Vergleich zum Array C1 leicht höhere Spannungswerte gemessen. U_B bewegt sich hier zwischen –470 V und –530 V bei Strömen zwischen 135 μ A und 240 μ A.

Abbildung 5-13. Strom-Spannungs-Charakteristik von Entladungen in Helium, Neon, Argon und Stickstoff bei einem Gasdruck von 10 mbar. – MEA Typ S-RBO-L1, R_{ext} = 1,96 M Ω .

Der Vergleich der für die beiden Array-Geometrien jeweils bei einem Druck von 10 mbar in Helium und Neon ermittelten Charakteristiken mit jenen, die bei 25 mbar erhalten wurden, zeigt, dass hier der Betriebsdruck im untersuchten Bereich keinen signifikanten Einfluss auf die absoluten Werte der Brennspannungen hat (siehe Tabelle 5-4). Für das Array L1 gilt das auch für Argon, während bei der Geometrie C1 die Brennspannung bei 25 mbar um 15 V bis 35 V niedriger liegt als bei 10 mbar. In Stickstoff war es mit beiden Geometrien nicht möglich, bei dem höheren Druck mit Spannungen von maximal –1200 V eine Gasentladung zu zünden. Abbildung 5-14 zeigt daher – beispielhaft für die Struktur L1 – nur für die drei untersuchten Edelgase die *U-I*-Charakteristik einer Glimmentladung bei 25 mbar. In Stickstoff kommt es lediglich zur Ausbildung einer Dunkelentladung mit einem linearen Stromanstieg bei ansteigender Spannung (OHM´scher Widerstand).

Abbildung 5-14. Strom-Spannungs-Charakteristik von Entladungen in Helium, Neon und Argon bei einem Gasdruck von 25 mbar. – MEA Typ S-RBO-L1. In Stickstoff konnte bei einem Druck von 25 mbar mit einer Spannung $U_{HV} \leq -1200$ V keine Gasentladung gezündet werden.

Tabelle 5-4. Zusammenstellung der Zündspannungen Uz sowie der Brennspannungen UB für
Entladungen in verschiedenen Gasen bei einem Druck von 10 mbar bzw. 25 mbar. MSE C1
und L1 vom Typ S-RBO (Wafer II)

	Helium		ium	Ne	on	Arç	gon	Stickstoff	
MSE		10 mbar	25 mbar	10 mbar	25 mbar	10 mbar	25 mbar	10 mbar	25 mbar
	<i>-U</i> z / V	450	650	450	550	550	850	850	> 1200 ^{a)}
C1	-U _B /	260–270	255–265	220–240	220–225	370–410	355–375	450–470	n.b.
	U-I ^{b)}	0	0	+	-	+	+	+	n.b.
	<i>-U</i> z / V	400	700	450	550	400	600	850	> 1200 ^{a)}
L1	-U _B /	240–280	255–270	230–240	230	265–275	280–285	470–530	n.b.
	U-I ^{b)}	+	_	+	0	0	_	+	n.b.

^a Bei einer Betriebsspannung U_{HV} = -1200 V abgebrochen. ^b Verlauf *U-I*-Charakteristik: positiv (+), negativ (–), praktisch konstant (0).

In Tabelle 5-4 ist jeweils zusätzlich die zur Zündung der Entladungen aufzubringende Spannung aufgeführt. Während sich diese bei einem Druck von 10 mbar für die drei Edelgase Helium, Neon und Argon im Bereich von –400 V bis –550 V bewegt, müssen zur Zündung einer Stickstoffentladung bereits mindestens –850 V an die Elektroden-Arrays angelegt werden. Bei 25 mbar werden dann durchweg höhere Spannungen benötigt. In Neon steigt der Wert für beide Arrays um 100 V auf –550 V an, in Helium und Argon werden um 200 V bis 300 V höhere Spannungen benötigt, und in Stickstoff lässt sich schließlich, wie bereits erwähnt, mit Spannungen von bis zu –1200 V keine Glimmentladung mehr zünden.

5.2 MSE im HF-Betrieb: Typ M-IMT (36 mm × 36 mm) und S-IMT

(15 mm \times 15 mm) – Institut für Mikrotechnik der TU Braunschweig

5.2.1 Arbeitsdruckbereich und optisches Erscheinungsbild der Entladung

Zur Erweiterung des Arbeitsdruckbereichs bis hin zu 1000 mbar (bzw. darüber hinaus) wurden verstärkt Untersuchungen mit HF-betriebenen MSE durchgeführt. Im 13,56-MHz-Betrieb ist es möglich, mit MSE großflächige Gasentladungen in den beiden leichten Edelgasen Helium und Neon bei Atmosphärendruck (mit einigen Arrays bis zu Drücken von 1500 mbar) routinemäßig zu erzeugen. Zum Betrieb der Entladungen sind dabei nur moderate Zündbzw. Brennspannungen im Bereich von wenigen 100 V erforderlich. So beträgt die Brennspannung einer Helium- bzw. Neonentladung bei Atmosphärendruck beispielsweise nur etwa 200 V (effektive Spannung) und die zur Erzeugung der Entladung typischerweise benötigte Leistungsdichte P_A nur etwa 3 W/cm² bis 6 W/cm² (s. hierzu Anm. Abb. 5-15). Helium- und Neonentladungen konnten bis zu Drücken von 1000 mbar mit allen zur Verfügung stehenden Arrays vom Typ M-IMT und S-IMT unabhängig von den variierten geometrischen Parametern Elektrodenbreite (100–2000 μ m) und Elektrodenabstand (50–250 μ m) erzeugt werden. Zumischungen von molekularen Gasen (z. B. N₂, O₂) zu Helium- bzw. Neonentladungen beeinträchtigt wurde.

Abbildung 5-15 zeigt beispielhaft eine mit einem Mikroelektroden-Array vom Typ M-IMT in einem Helium/NO-Gasgemisch (NO-Konzentration: 500 ppm) erzeugte Hochfrequenzentladung (25 mm × 30 mm) bei einem Druck von 990 mbar in Abhängigkeit von der Leistungsdichte (2,9 W/cm² bis 4,3 W/cm²). Bei Leistungsdichten um etwa 3W/cm² ist die Entladung hier noch nicht homogen über die gesamte Array-Fläche ausgebildet (Abb. 5-15 a, b). Dies wird schließlich bei einer HF-Leistung von 3,5 W/cm² erreicht (Abb. 5-15 c). Eine weitere Erhöhung der Leistungsdichte auf 4,3 W/cm² (Abb. 5-15 f) resultiert dann zunehmend in einer verstärkten Lichtemission der Entladung. Am linken und rechten Rand der flächigen Entladung bilden sich im Vergleich dazu hellere punktförmige Entladungen aus (am rechten Bildrand in der Mitte teilweise durch die Kontaktklemme verdeckt). Diese entstehen an den Elektrodenenden aufgrund der dort vorherrschenden Inhomogenitäten des elektrischen Feldes. Der hellere Kreis, der auf den Abbildungen 5-15 c–f zu erkennen ist, sind Reflektionen an der Fassung des Fensters, durch das die Aufnahmen gemacht wurden.

Abbildung 5-15. Hochfrequenzentladung (25 mm × 30 mm) in Helium/500 ppm NO bei 990 mbar als Funktion der HF-Leistungsdichte. – Mikroelektroden-Array Typ M-IMT-9 (Trägermaterial: Keramik, Elektrodenmaterial: Kupfer, Elektrodenabstand: 100 μ m, Elektrodenbreite: 350 μ m, Kantenstruktur der Elektroden: gewellt). a) 2,9 W/cm²; b) 3,1 W/cm²; c) 3,5 W/cm²; d) 3,7 W/cm²; e) 4 W/cm²; f) 4,3 W/cm². (Anmerkung: Alle HF-Leistungsdichten wurden in dieser Arbeit aus dem jeweils am HF-Generator angezeigten Wert für die übertragene Leistung (*engl.* forwarded power) und der in Tabelle 4.3-1 auf S. 52 angegebenen Plasmafläche berechnet.)

Abbildung 5-16. Hochfrequenzentladung (13,56 MHz) in Helium mit 500 ppm NO bei 240 mbar als Funktion der HF-Leistungsdichte. – MEA Typ M-IMT-9 (Trägermaterial: Keramik, Elektrodenmaterial: Kupfer, Elektrodenabstand: 100 μ m, Elektrodenbreite: 350 μ m, Kantenstruktur der Elektroden: gewellt). a) 2,8 W/cm²; b) 3,1 W/cm²; c) und d) 3,2 W/cm².

Bei Drücken um 200 mbar Helium und Leistungsdichten von etwa 3 W/cm² bildete das Plasma teilweise geordnete Muster aus. Einige Beispiele hierfür sind in Abbildung 5-16 dargestellt. Abbildung 5-16 a zeigt die Ausbildung von streifenförmigen Entladungen auf der MSE-Oberfläche in äquidistanten Abständen ($P_A = 2,9$ W/cm²). Jedoch verlaufen diese Entladungen nicht parallel zu den Elektroden, sondern vielmehr im 90°-Winkel dazu. Links und rechts davon sind erneut die punktförmigen Entladungen an den Elektrodenenden zu beobachten. Die am oberen Bildrand erkennbare Entladung bildet sich von der Kante des Arrays zu der dahinter liegenden Haltevorrichtung aus. Bei einer geringfügig höheren Leistungsdichte (3 W/cm²) beginnen die streifenförmigen Entladungen ineinander zu fließen (Abb. 5-16 b). Eine weitere Erhöhung von P_A um nur 0,1 W/cm² verstärkt das Ineinanderfließen (Abb. 5-16 c, d). Hier werden bereits einige Bereiche flächig von der Entladung bedeckt. Ab einer Flächenleistungsdichte von ca. 4 W/cm² dehnt sich schließlich auch hier, genau wie bei höheren Drücken, die Entladung über die gesamte Oberfläche aus (vgl. dazu Abb. 5-15 c–f).

Abbildung 5-17. Erzeugung von Hochfrequenzentladungen (13,56 MHz) mit Typ S-IMT Mikroelektroden-Arrays. – a) Im Reaktor montiertes Array. Trägermaterial: Glas (Dicke: 0,7 mm), Elektrodenmaterial: Kupfer, Elektrodendicke: $15 \,\mu$ m, Elektrodenabstand: 100 μ m, Elektrodenbreite: 250 µm, Elektrodenunterätzung: 10-12 µm; b) Gasentladung in Stickstoff bei 100 mbar (Gasdurchfluss: 200 sccm). Die Entladung (7,5 mm × 7,5 mm) konnte mit einer Flächenleistungsdichte von 48 W/cm² stabil betrieben werden (Versuchsdauer: 15 min).

Der HF-Betrieb der MSE mit anderen Gasen als Helium oder Neon, beispielsweise mit Argon oder Stickstoff, erfordert eine weitaus höhere Flächenleistungsdichte von etwa 40 W/cm² bis zu 70 W/cm². Dies führt aber zu einer höheren Wärmebelastung der Elektroden-Arrays, so dass mit den zur Verfügung stehenden MSE die realisierbaren Arbeitsdrücke auf maximal 250 mbar (stabile und flächige Entladungen bis 130 mbar) begrenzt waren. Der Betrieb von MSE-Plasmen in Argon oder in molekularen Gasen bzw. Gasgemischen bei höheren Drücken bzw. bei Atmosphärendruck erfordert letztendlich optimierte Systeme, u. a. mit einer galvanischen Verstärkung der Elektroden auf Schichtdicken bis zu 100 um. Inzwischen stehen solche Systeme zur Verfügung und zur Zeit werden damit ausführliche Tests durchgeführt, deren Ergebnisse jedoch aus Zeitgründen nicht mehr in diese Arbeit einfließen konnten. Vielmehr wurde in dieser Arbeit der Weg zu diesen verbesserten Systemen bereitet, indem erste grundlegende Tests an N₂-Entladungen durchgeführt wurden. Abbildung 5-17 a zeigt beispielsweise ein im Plasmareaktor montiertes Array vom Typ S-IMT und Abbildung 5-17 b eine damit in Stickstoff bei einem Druck von 100 mbar stabil betriebene, flächige Gasentladung (7,5 mm \times 7,5 mm).

Die ersten Tests mit Stickstoffentladungen wurden mit MSE vom Typ S-IMT mit 2 µm dicken Kupferelektroden auf einem Glasträger durchgeführt. Mit einer Elektrodenbreite von 250 µm und Elektrodenabständen von 60 µm bis 140 µm ließen sich hier mit HF-Leistungen von 30 W, das entspricht etwa 53 W/cm², N₂-Plasmen mit einer Brenndauer von maximal 10 s zünden und betreiben. Die Strukturen erwärmen sich bei dieser Leistungsdichte bereits in der kurzen Zeit so stark, dass sie vollständig zerstört werden. Abbildung 5-18 zeigt dies an einem Beispiel (Elektrodenabstand: 60 μm, Elektrodenbreite: 250 μm). Jeweils ein Teil der Elektroden ist verdampft, teilweise ist auch das Glassubstrat geschmolzen. Das "Durchbrennen" der Struktur kündigt sich durch lokal auftretende, punktförmige Entladungen - ähnlich wie sie auch an den Elektrodenenden vorkommen (s. o.) - an, so dass sich das

b

Ausmaß der Beschädigungen durch rechtzeitiges Abschalten der Hochfrequenz reduzieren und sich danach mit dem betreffenden Array problemlos erneut eine Entladung betreiben lässt.

Bereits bei den ersten Versuchen mit Stickstoffentladungen fiel auf, dass die Automatik des Anpassungsnetzwerkes im Vergleich zu Helium- oder Neonentladungen äußerst empfindlich reagiert. Eine stabile Einkopplung der am HF-Generator voreingestellten Leistung war zum Teil nur nach mehreren Anläufen bzw. gar nicht möglich. Daraufhin wurde der HF-Generator zunächst im "Load-Power-Leveling-Modus" betrieben, d. h., die voreingestellte Leistung wird in jedem Fall in das Plasma eingekoppelt, auch wenn eine vollständige Impedanzanpassung nicht möglich ist. Voraussetzung ist allerdings, dass die dann reflektierte Leistung einen vorgegebenen Prozentsatz nicht überschreitet. Als bessere Lösung konnte später auf eine manuelle Impedanzanpassung zurückgegriffen werden, d. h., die Kapazität der beiden Kondensatoren konnte manuell im Bereich von 0–100 % in 1-%-Schritten eingestellt werden, so dass zum einen eine konstante HF-Leistung in die Entladung eingekoppelt und zum anderen der reflektierte Anteil dabei zugleich minimiert wurde.

Abbildung 5-18. Zerstörtes Typ S-IMT MEA nach dem Betrieb einer N₂-Entladung (Brenndauer \approx 10 s). – Ein Teil der Kupferelektroden ist verdampft, das Glassubstrat teilweise geschmolzen.

Für die weiteren Untersuchungen wurde die Schichtdicke der Kupferelektroden galvanisch auf 15 μm verstärkt. Mit diesen Typ S-IMT Arrays (Elektrodenabstand: 100 μm, Elektrodenbreite: 250 μm) konnten in Stickstoff Entladungen bis zu einem Druck von 100 mbar mit einer Brenndauer von mehreren zehn Minuten stabil betrieben werden (Versuchsende nach 40 min). Typische Leistungsdichten, die zur Zündung und zum stabilen Betrieb der Entladung notwendig waren, bewegten sich hier im Bereich zwischen 35 W/cm² und 60 W/cm². Nach einer Druckerhöhung auf 250 mbar war es möglich, mit einer HF-Leistung von 45 W/cm² ein Plasma mit einer Brenndauer von bis zu 40 s zu zünden, das sich jedoch nicht über die gesamte aktive Array-Fläche ausbildete und auch nicht stabil brannte, sondern sich über die Oberfläche bewegte. Dieses Phänomen zeigt Abbildung 5-19. Ein ähnliches Verhalten zeigten Entladungen bei Drücken zwischen 100 mbar und 130 mbar nach einer Brenndauer von 5–7 min. Nach einer Leistungserhöhung um ca. 8 W/cm² konnte jedoch für etwa 3 min wieder ein flächiges homogenes Plasma hergestellt werden. Nach 10–12 min waren zur Aufrechterhaltung einer stabilen Entladung aber bereits Flächenleistungsdichten von 80–85 W/cm² notwendig, die dann nur noch Brenndauer von maximal 30 s zuließen.

Abbildung 5-19. Hochfrequenzentladung (13,56 MHz) in Stickstoff bei 250 mbar. – Die nur teilweise ausgebildete Entladung bewegt sich schnell über die Oberfläche (der Zeitabstand zwischen den Fotos beträgt etwa 1–3 s). MEA Typ S-IMT, Trägermaterial: Glas (Dicke: 0,7 mm), Elektrodenmaterial: Kupfer, Elektrodenschichtdicke: 15 µm, Elektrodenabstand: 100 µm, Elektrodenbreite: 250 µm, Elektrodenunterätzung: 10–12 µm, HF-Flächenleistungsdichte: 45 W/cm², Gasdurchfluss: 200 sccm N₂.

Abbildung 5-20. Parasitäre Hochfrequenzentladung (13,56 MHz) zwischen Mikroelektroden-Array und Kontaktklemme in Helium bei einem Druck von 300 mbar.

Bei der Variation der Elektrodengeometrie zeigte sich in allen Gasen, dass Mikroelektroden, die ihrerseits eine Mikrostruktur aufweisen, also z. B. Elektrodensysteme mit Sägezahn-Geometrie, ein vorteilhaftes Zündverhaltens besitzen, d. h., die zur Zündung der Entladungen notwendige Leistungsdichte wird verringert.

Bei HF-Entladungen besteht bei niedrigen Drücken – der Druckbereich ist gasartabhängig – immer die Möglichkeit, dass sich parasitäre Entladungen ausbilden, z. B. zwischen den Zuleitungen oder aber wie in Abbildung 5-20 gezeigt, zwischen der HF-Kontaktklemme und dem Array. Dies ist durch das PASCHEN-Gesetz erklärbar. So besitzt Stickstoff sein PASCHEN-Minimum bei *pd* = 1 mbar · cm mit einer Zündspannung von etwa 250 V, was bedeutet, dass sich in diesem Fall zwischen zwei Zuleitungen, die sich in einem Abstand von 1 cm befinden, bei einem Druck von 1 mbar mit einer sehr geringen Spannung bzw. mit einer sehr geringen HF-Leistung eine Entladung zünden lässt. Entsprechend lässt sich das Phänomen der "leuchtenden Kabel" bei höheren Drücken nicht mehr beobachten. Bei Drücken oberhalb von 150–350 mbar ist in allen untersuchten Gasen die Ausbildung von HF-Entladungen mit niedrigen Zündspannungen aufgrund der dann notwendigen Elektrodenabstände im Mikrometerbereich nur noch direkt über der MSE-Oberfläche möglich.

5.2.2 Plasmadiagnostik mittels QMS und OES

5.2.2.1 Stickoxide (NO_x)

Zur Untersuchung der plasmachemischen Umsetzung von Stickoxiden (NO_x) in MSE-Entladungen sind erste quantitative Messungen mit Hilfe der Quadrupolmassenspektrometrie mit verschiedenen MSE vom Typ M-IMT bzw. S-IMT in Helium und Argon als Trägergas durchgeführt worden. Um eine definierte Führung des Gasstromes zu gewährleisten, kam für diese Messungen das in Abbildung 3-4 (S. 18) gezeigte Modul zum Einsatz. Es ist jedoch anzumerken, dass dieses Plasmareaktor-Modul mit seiner Größe von 70 mm \times 70 mm \times 20 mm nicht für den Einsatz der kleineren MSE vom Typ S-IMT (15 mm \times 15 mm) optimiert war, so dass ein relativ großes Totvolumen vorhanden war, in welchem keine plasmachemische Umsetzung stattfinden konnte. Entsprechend können die erzielbaren Umsätze im direkten Vergleich nicht so hoch sein wie die mit den M-IMT MSE ($36 \text{ mm} \times 36 \text{ mm}$) erreichten; vielmehr besteht hier noch Optimierungsbedarf. Die Messungen wurden im Druckbereich zwischen 100 mbar und 1000 mbar mit Gasdurchflüssen zwischen 10 sccm und 1500 sccm durchgeführt. Das wesentliche Ergebnis der Untersuchungen zum NO_x-Stoffumsatz ist, dass, abhängig von der Gaszusammensetzung, vor allem aber in Abhängigkeit von der elektrischen Leistung und der Durchflussrate, sowohl der Aufbau als auch der Abbau von NO_x initiiert werden kann. Diese Steuerungsmöglichkeiten machen MSE für einige Anwendungsgebiete außerordentlich interessant. Die Messergebnisse werden im Folgenden anhand einiger repräsentativer Beispiele vorgestellt.

Abbildung 5-21 zeigt die Ergebnisse einer im MID-Modus (MID = Multiple Ion Detection) durchgeführten massenspektrometrischen Messung, die den Abbau von Stickstoffmonoxid (NO) und Stickstoffdioxid (NO₂) in einer MSE-Entladung bei Atmosphärendruck (990 mbar) demonstriert. Bei dieser Messung wurde eine Prüfgasmischung aus 500 ppm NO in Helium bei einem Gasfluss von 290 sccm eingesetzt, die Fläche der Entladung betrug 25 mm × 30 mm. Die Abbildung zeigt fünf aufeinander folgende Messzyklen, wobei die HF-Leistungsdichte von 2,9 W/cm² (1. Messung, links) in Schritten von ca. 0,5 W/cm² auf 5,1 W/cm² (5. Messung, rechts) erhöht wurde. Hierzu ist zu bemerken, dass die angegebenen Leistungsdichten aus den am HF-Generator direkt ablesbaren Leistungswerten (22–38 W) berechnet wurden, so dass die tatsächlich in die Entladung eingekoppelten Leistungen niedriger sind.

Dargestellt ist der Konzentrationsverlauf der folgenden Spezies (Masse/Ladungs-Verhältnis, m/z): N₂⁺ (28), NO⁺ (30), O₂⁺ (32), N₂O⁺/CO₂⁺ (44) und NO₂⁺ (46). Eine Bildung höherer Stickoxide, wie z. B. NO₃⁺ (62), N₂O₃⁺ (76) oder N₂O₅⁺ (108), wurde nicht beobachtet (aus Gründen der Übersicht nicht dargestellt). Außerdem wurden detektiert: C⁺ (12), H₂O⁺ (18) sowie Ar⁺ (40). Durch die Detektion von C⁺ (12) konnte gesichert werden, dass die Änderungen der Masse 44 auf Konzentrationsänderungen des Distickstoffmonoxids (N₂O) und nicht auf Änderungen der CO₂-Konzentration zurückzuführen sind. Um Konzentrationsänderungen durch Druckschwankungen ausschließen zu können, wurde, wie auch bei allen anderen Messungen, zusätzlich der mit dem Compact Gauge PKR 261 im Rezipienten gemessene Druck (hier: $6 \cdot 10^{-7}$ mbar) aufgezeichnet.

Abbildung 5-21. Abbau von NO_x als Funktion der HF-Leistungsdichte (1. Messung, links: 2,9 W/cm²; 5. Messung, rechts: 5,1 W/cm²). – 500 ppm NO in Helium (Durchfluss: 290 sccm) bei 990 mbar. Massenspektrometrische Messung im MID-Modus mit dem Array M-IMT-6 (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodenabstand: 100 μ m, Elektrodenbreite: 160 μ m). Die Entladung wurde erstmals nach ca. 200 s mit 2,9 W/cm² gezündet. Man beobachtet einen Anstieg für Stickstoff und Sauerstoff, während NO und NO₂ abgebaut werden. Nach ca. 15 min wurde die Entladung abgeschaltet und nach Einstellung eines Gleichgewichts mit einer höheren Leistungsdichte erneut gezündet.

Abbildung 5-21 zeigt zunächst bis zu einem Zeitpunkt $t \approx 200$ s die Ionenströme der Spezies, ohne dass die Entladung gezündet wurde. Nachdem sich im gesamten System annähernd stationäre Bedingungen eingestellt hatten, wurde die Entladung mit einer HF-Leistungsdichte von 2,9 W/cm² erstmals gezündet. Man beobachtet unmittelbar (die Ansprechzeit des Massenspektrometers beträgt beim verwendeten Aufbau etwa 30–50 s) eine kontinuierliche Abnahme des Ionenstromes für NO⁺ sowie NO₂⁺, während für O₂⁺ und N₂⁺ ein Anstieg zu verzeichnen ist. Demnach findet in der Entladung erwartungsgemäß ein Abbau von NO_x in N₂ und O₂ statt. Beim NO sind dies bei einer Leistungsdichte von 2,9 W/cm² 51 %, beim NO₂ 29 %. Gleichzeitig wird eine Erhöhung des N₂O⁺-Signals beobachtet, die jedoch vergleichsweise als vernachlässigbar betrachtet werden kann. Nach einer Dauer von etwa 15 min wurde die Entladung abgeschaltet. Im fünften Messzyklus ergibt sich schließlich bei einer Leistungsdichte von 5,1 W/cm² für den Abbau von NO ein Wert von 65 % sowie eine Reduktion von NO₂ um 40 %. Abbildung 5-22 zeigt als Ausschnitt noch einmal den Konzentrationsverlauf des Stickstoffmonoxids sowie den der Abbauprodukte Stickstoff und Sauerstoff in einer linearen Darstellung.

Abbildung 5-22. Abbau von NO als Funktion der HF-Leistungsdichte. – 500 ppm NO in Helium bei 990 mbar. Lineare Darstellung der Konzentration von NO, N_2 und O_2 aus Abbildung 5-21.

Abbildung 5-23. Abbau von NO als Funktion der HF-Leistungsdichte. – Messungen mit Typ M-IMT MEA unter Variation der Geometrie und des Trägermaterials. 500 ppm NO in Helium bei 990 mbar.

Messungen, wie anhand von Abbildung 5-21 bzw. 5-22 vorgestellt, wurden mit M-IMT MSE unterschiedlicher Geometrieparameter unter identischen Bedingungen (p = 990 mbar, Durch-fluss: 290 sccm He/NO (500 Vol.ppm)-Prüfgasgemisch) durchgeführt. Darüber hinaus kam sowohl Glas als auch Keramik als Trägermaterial zum Einsatz. Die Ergebnisse sind in Tabelle 5-5 und Abbildung 5-23 zusammengefasst. Betrachtet man die Abhängigkeit des NO_x-Abbaus von der Art des Trägermaterials, so zeigt sich anhand des Arrays M-IMT-6, dass mit Glas als Träger sowohl beim NO als auch beim NO₂ um 7–15 % höhere Abbauraten erreicht werden konnten als mit einem Keramikträger. Für den Keramikträger wurde mit einer HF-Leistungsdichte zwischen ca. 3 W/cm² und 5 W/cm² ein NO- bzw. NO₂-Abbau von ca. 30–50 % bzw. 20–30 % ermittelt, während sich mit dem Glasträger Werte von ca. 50–65 % (NO) und 30–40 % (NO₂) ergaben. Die Beschichtung der Elektrodenenden mit einem Dielektrikum hat dagegen offenbar einen geringeren Einfluss auf die Abbauraten, soweit dies anhand der wenigen vorliegenden Messpunkte zu beurteilen ist.

Tabelle 5-5. Abbau von NO_x (alle Angaben in %) mit MSE vom Typ M-IMT in Abhängigkeit von der eingekoppelten HF-Leistungsdichte P_A . – Es wurden zwei Geometrien auf unterschiedlichen Trägermaterialien untersucht. Messbedingungen: 500 ppm NO in Helium bei einem Druck von 990 mbar und einem Gasdurchfluss von 290 sccm, Reaktorvolumen: 70 mm × 70 mm × 10 mm. MSE M-IMT-9: Elektrodenabstand: 100 µm, Elektrodenbreite: 350 µm, Elektrodenkanten mit versetzten Zacken. MSE M-IMT-6: Elektrodenabstand: 100 µm, Elektrodenbreite: 160 µm, glatte Elektrodenkanten.

MSE Träger	M-IMT-9 Keramik		M-IMT-6 Keramik		M-IMT-6 ^{a)} Glas		M-IMT-6 ^{b)} Glas	
$P_{\rm A}/{\rm Wcm}^{-2}$	NO	NO_2	NO	NO_2	NO	NO_2	NO	NO_2
2,4	40	23	32	19	n.b.	n.b.	52	29
2,9	48	24	39	22	51	29	56	31
3,5	55	36	41	21	56	35	n.b.	n.b.
4	60	31	47	25	61	36	n.b.	n.b.
4,5	61	38	50	26	62	35	n.b.	n.b.
5,1	63	41	53	30	64	38	n.b.	n.b.

^a Bei einer HF-Leistung von 2,4 W/cm² konnte noch kein flächiges, stabiles Plasma erzeugt werden. ^b Die Elektrodenenden waren mit einer Schicht aus AI_2O_3 (Dicke: 100 nm) überzogen. Die Struktur wurde bei der Erhöhung der HF-Leistung auf 3,5 W/cm² beschädigt, so dass eine sinnvolle Messung nicht mehr möglich war.

Bei den bisher vorgestellten Messungen wurde mit einem konstanten moderaten Gasdurchfluss von 290 sccm gearbeitet. Bei einem Reaktorvolumen von etwa 50 cm³ findet also formal alle 10 s ein vollständiger Gasaustausch statt. Nun wurde die Gasdurchflussrate variiert, um deren Einfluss auf die Plasmachemie des NO zu untersuchen.

Abbildung 5-24. Abbau von NO als Funktion der HF-Leistung bei niedrigen Gasdurchflussraten (29 sccm). – Eine Erhöhung der Flächenleistungsdichte führt zu einem verminderten NO-Abbau. 500 ppm NO in Helium bei 950 mbar. MEA Typ S-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 35 μm, Elektrodenabstand: 100 μm, Elektrodenbreite: 250 μm).

Abbildung 5-24 zeigt ein Beispiel mit einem vergleichsweise kleinen Durchfluss von 29 sccm bei einem Druck von 950 mbar (500 ppm NO in Helium), so dass nur noch alle 100 s ein Gasaustausch stattfindet. Hier wurde ein Array vom Typ S-IMT (Elektrodenbreite: 250 μ m, Elektrodenabstand: 100 μ m, Schichtdicke der Cu-Elektroden: 35 μ m, Unterätzung: 30 μ m) verwendet, dass mit relativ hohen Flächenleistungsdichten von 46 W/cm² bzw. 64 W/cm² (das entspricht einer am HF-Generator vorgegebenen Leistung von 26 W bzw. 36 W) betrieben wurde. Zunächst wird bei einer HF-Leistung von 46 W/cm² ein Abbau von NO um 25 % beobachtet. Das, absolut gesehen, mit einer hohen Leistungsdichte nur ein moderater Abbau erzielt werden kann, ist wie oben beschrieben durch das große Totvolumen des Reaktormoduls begründet. Als Abbauprodukte werden auch hier N₂ und O₂ erfasst. Entscheidend ist aber, dass sich durch eine Steigerung der HF-Leistung nicht wie bei den Messungen mit Durchflussraten von 290 sccm ein höherer NO-Umsatz erzielen lässt, sondern dieser vielmehr auf einen Wert von 10 % zurückgeht. Die NO₂-Konzentration zeigt während der gesamten Messung keine signifikante Änderung. Messungen mit sehr viel höheren Gasdurchflussraten als 290 sccm wurden bislang in Helium nicht durchgeführt.

Abbildung 5-25. Abbau von NO bei mittleren Gasdurchflussraten (250 sccm) in Argon. – 500 ppm NO in Argon bei 100 mbar. MEA Typ S-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 60 μ m, Elektrodenabstand: 100 μ m, Elektrodenbreite: 900 μ m), HF-Leistung: 39 W/cm².

Der Auf- bzw. Abbau von Stickoxiden wurde auch in Argon untersucht. Aufgrund der größeren Wärmebelastung der MSE durch Argonentladungen wurden die Messungen bei einem Druck von 100 mbar mit einer konstanten Flächenleistungsdichte von 39 W/cm² durchgeführt. Das eingesetzte Prüfgasgemisch enthielt wiederum NO in einer Konzentration von 500 Vol.ppm. Es wurden mehrere Messungen mit variablen Durchfluss durchgeführt. Beispielhaft sind in Abbildung 5-25 und 5-26 die Ergebnisse für Durchflussraten von 250 sccm bzw. 10 sccm dargestellt (Typ S-IMT MSE mit einem Elektrodenabstand von 100 μ m und einer Elektrodenbreite von 900 μ m, Kupferelektroden mit einer Schichtdicke von 60 μ m, Glasträger mit einer Dicke von 0,7 mm). Abbildung 5-25 zeigt, dass auch in Argon bei moderaten Gasdurchflussraten (250 sccm) ein Abbau des Stickstoffmonoxids stattfindet. Die erzielte Abbaurate beträgt 32 %. Änderungen der Stickstoff- bzw. Sauerstoffkonzentration als Folge der NO-Dissoziation konnten hier nicht erfasst werden. Die Konzentration des NO₂ bleibt während der gesamten Messung konstant (in Abbildung 5-25 nicht dargestellt).

In Argon wurden auch höhere Gasdurchflussraten untersucht. Eine Erhöhung des Gasdurchflusses auf beispielsweise 1500 sccm (formal findet alle 2 s ein Gasaustausch statt) führt zu einem verminderten NO-Umsatz von nur noch 17 %. Der Konzentrationsverlauf entspricht ansonsten dem in Abbildung 5-25 gezeigten Ergebnis für 250 sccm. Geht man im Fall des Argons nun zu kleinen Gasdurchflüssen (z. B. 10 sccm) über, wird im Gegensatz zum Helium ein NO-*Aufbau* beobachtet (s. Abb. 5-26). Quantitative Aussagen sind aufgrund der nicht durchgeführten Kalibrierung in diesem Fall nicht möglich. Das Absinken bzw. Ansteigen der Konzentrationen kurz nach dem An- bzw. Abschalten des Plasmas ist auf Druckschwankungen im Reaktor zurückzuführen. Die Sauerstoff- sowie die Stickstoffkonzentration bleibt während der Messung konstant, ebenso die Konzentration des NO₂ (in Abbildung 5-26 nicht dargestellt). Die N₂O-Konzentration erfährt ebenfalls in allen Messungen (10 sccm, 250 sccm, 1500 sccm) keine signifikante Veränderung.

Abbildung 5-26. Aufbau von NO bei kleinen Gasdurchflussraten (10 sccm) in Argon. – 500 ppm NO in Argon bei 100 mbar. MEA Typ S-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 60 μ m, Elektrodenabstand: 100 μ m, Elektrodenbreite: 900 μ m), HF-Leistung: 39 W/cm².

In Argon wird also bei großem Durchfluss (250–1500 sccm), d. h. kleiner Verweilzeit, NO abgebaut. Bei kleinem Durchfluss (z. B. 10 sccm), also großer Verweilzeit, wird NO erzeugt. Die mögliche Abbaurate durchläuft ein Maximum bei einer Durchflussrate von 250 sccm.

Da in den mit Argon durchgeführten Messungen die Abbauprodukte Stickstoff und Sauerstoff nicht mit dem Massenspektrometer erfasst werden konnten, bietet sich als Alternative der Einsatz der optischen Emissionsspektroskopie (OES) an. Die Empfindlichkeit dieser Methode soll im Folgenden kurz anhand zweier Beispiele demonstriert werden.

Abbildung 5-27. OES-Spektrum einer Heliumentladung bei 420 mbar und einem Gasdurchfluss von 150 sccm. – MEA Typ S-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 2 μ m, Elektrodenabstand: 100 μ m, Elektrodenbreite: 250 μ m), HF-Leistungsdichte: 41 W/cm².

Abbildung 5-27 zeigt das Emissionsspektrum einer Heliumentladung bei einem Druck von 420 mbar und einem Gasdurchfluss von 150 sccm im Wellenlängenintervall von 383-417 nm (MSE Typ S-IMT, Elektrodenabstand: 100 um, Elektrodenbreite: 250 um, 2 um dicke Kupferelektroden, HF-Leistung: 41 W/cm²). Das abgebildete Spektrum ist das Ergebnis der Aufsummierung von 1000 Einzelmessungen mit einer Dauer von jeweils 500 us (Gitter: 1200 Linien/mm. Eintrittsspalt: 10 um). In diesem Wellenlängenbereich hat das Heliumatom zwei weniger intensive Übergänge bei 396,47 nm und 402,62 nm, die im aufgenommenen Spektrum nicht beobachtet werden, sowie einen intensiven Übergang bei 388,87 nm $(3^{3}P_{0}-2^{3}S_{1})$, der detektiert wird. Im Spektrum dominieren jedoch vier Übergänge im $C^{3}\Pi_{u} - B^{3}\Pi_{a}$ - System (zweites positives System) des N₂-Moleküls bei 394,3 nm (2–5), 399,84 nm (1–4), 405,94 nm (0-3) und 414,18 nm (3-7) sowie der 0-0-Übergang im $B^2 \Sigma_u^+ - X^2 \Sigma_q^+$ - System (erstes negatives System) des N2⁺-Molekülions bei 391,44 nm mit der größten Intensität. Die Messung verdeutlicht, dass auch relativ geringe Konzentrationen von Stickstoff in einer Heliumentladung problemlos nachgewiesen werden können (der Reaktor wurde vor der Messung bis auf einen Basisdruck von 10⁻⁴ mbar abgepumpt und während der Messung im Durchfluss betrieben).

Die hohe Intensität der Stickstoff-Übergänge wird bei Betrachtung von Abbildung 5-28 noch deutlicher, welche das Spektrum einer Entladung – wiederum im Wellenlängenbereich von

383–417 nm – zeigt, die in Helium (290 sccm) mit einer Zumischung von 2,3 Vol.% (7 sccm) Stickstoff bei einem Druck von 660 mbar erzeugt wurde (MSE Typ M-IMT, Elektrodenbreite: 600 μm, Elektrodenabstand: 100 μm, 15 μm dicke Kupferelektroden, HF-Leistungsdichte: 3,2 W/cm²). Auch hier wurden 1000 Einzelmessungen (Dauer: 990 μs) aufsummiert (Gitter: 1200 Linien/mm, Eintrittsspalt: 10 μm). In diesem Spektrum sind nur noch Übergänge des Stickstoffs bzw. dessen Molekülions zu beobachten, und das bei einem relativ geringen Volumenprozentanteil von 2,3 % Stickstoff. Auch der intensive $3^{3}P_{0}$ – $2^{3}S_{1}$ -Übergang des Heliums wird von der intensiven N₂-Emission überdeckt.

5.2.2.2 Tetrafluormethan (CF₄)

Zum Abschluss der Arbeit wurden einige Tests durchgeführt, die dazu dienten, sich einen Überblick darüber zu verschaffen, wie die optische Emissionsspektroskopie zur Untersuchung plasmachemischer Prozesse in Stickstoffentladungen, die bis zu 5 Vol.% Perfluorcarbone enthalten, eingesetzt werden kann. Dazu wurde als einfachster Vertreter dieser Stoffklasse Tetrafluormethan (CF₄) verwendet. Zunächst wurde überprüft, ob Abbauprodukte wie CF oder CF₂ direkt nachgewiesen werden können. Um verlässliche Aussagen treffen zu können, wurde jeweils immer auch eine Vergleichsmessung in reinem

Abbildung 5-28. OES-Spektrum einer Entladung in einem Gasgemisch aus 290 sccm Helium und 7 sccm Stickstoff (2,3 Vol.%) bei 660 mbar. – Das Spektrum zeigt nur Übergänge des Stickstoffs bzw. dessen Molekülions N₂⁺, Helium-Übergänge können nicht detektiert werden. MEA Typ M-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 15 µm, Elektrodenabstand: 100 µm, Elektrodenbreite: 600 µm, Unterätzung mit 40%iger Flusssäure: 15 µm), HF-Leistung: 3,2 W/cm².

Stickstoff durchgeführt. CF emittiert beispielsweise im Bereich von 210-280 nm bei 240 nm, 247,4 nm und 255,8 nm und CF₂ bei 245,8 nm, 248,8 nm, 251,8 nm, 255 nm, 259,5 nm, 262,8 nm, 271,1 nm, 275 nm und 280 nm. Ein Nachweis war in diesem Wellenlängenbereich jedoch nicht möglich, da hier die y-Banden des in Spuren vorhandenen Stickstoffmonoxids $(A^{2}\Sigma^{+}-X^{2}\Pi)$ mit einer hohen Intensität auftreten. Ein Beispiel hierfür zeigt Abbildung 5-29. Dargestellt ist das Emissionsspektrum (Integration von 750 Einzelmessungen à 990 µs, 600-Linien/mm-Gitter, 10 um Eintrittsspalt) einer Entladung in einem Gasgemisch aus Stickstoff und 5 Vol.% CF₄ bei einem Druck von 50 mbar und einem Gasdurchfluss von 200 sccm. Die HF-Leistungsdichte betrug 53 W/cm² (MSE Typ S-IMT, Elektrodenabstand: 70 μm, Elektrodenbreite: 900 µm, 15 µm dicke Kupferelektroden, Schutzschicht: 0,5 µm Al₂O₃, Unterätzung: 60 µm). Alle beobachtbaren Banden sind dem $A^{2}\Sigma^{+}-X^{2}\Pi$ -System des NO zuzuordnen. In Abbildung 5-29 sind die entsprechenden Schwingungsquantenzahlen (v', v'') eingetragen ($\Delta v = +1, 0, -1, -2, -3, -4$). Auch in anderen Wellenlängenbereichen ist ein Nachweis von CF oder CF₂ (z. B. CF₂ bei 321,4 nm) nicht möglich, da dort die intensiven Banden des Stickstoffs auftreten. Dagegen ist es möglich, im Bereich zwischen 380 nm und 390 nm das CN-Radikal zu detektieren, welches z. B. bei einer Anwendung der MSE zur Nachbehandlung CF₄-haltiger Abgase ein unerwünschtes Abbauprodukt darstellen würde. Abbildung 5-30 b zeigt dies an einem Beispiel.

Abbildung 5-29. γ-Banden (v', v'') des NO im Wellenlängenbereich von 210–280 nm. – OES-Spektrum (750 Einzelmessungen à 990 μs, 600-Linien/mm-Gitter, 10 μm Eintrittsspalt) einer Entladung in einem Gasgemisch aus Stickstoff und 5 Vol.% CF₄ bei 50 mbar und 200 sccm Gasdurchfluss. MEA Typ S-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 15 μm, Elektrodenabstand: 70 μm, Elektrodenbreite: 900 μm, Elektrodenunterätzung: 60μm, Schutzschicht: 0,5 μm Al₂O₃), HF-Leistungsdichte: 53 W/cm².

Abbildung 5-30. OES-Spektren von Gasentladungen in Stickstoff. – a) Stickstoff; b) Stickstoff + 5 Vol.% Tetrafluormethan (CF₄). 750 Einzelmessungen à 990 μ s, 1200-Linien/mm-Gitter, 10 μ m Eintrittsspalt. MEA Typ S-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 15 μ m, Elektrodenabstand: 70 μ m, Elektrodenbreite: 900 μ m, Elektrodenunterätzung: 60 μ m, Schutzschicht: 0,5 μ m Al₂O₃), HF-Leistungsdichte: 53 W/cm².

Dargestellt ist das Emissionsspektrum einer Entladung in einem Gasgemisch aus Stickstoff und 5 Vol.% CF₄ im Wellenlängenbereich von 374–405 nm. Die Betriebsparameter der Entladung sowie die Messparameter sind die gleichen wie für das in Abbildung 5-29 gezeigte Spektrum, mit der Ausnahme, dass hier ein 1200-Linien/mm-Gitter verwendet wurde, so dass der erfasste Wellenlängenbereich nur noch etwa halb so groß ist. Neben den bereits im Zusammenhang mit Abbildung 5-28 erwähnten Übergängen im $C^3\Pi_u - B^3\Pi_g$ - System des N₂-Moleküls und im $B^2\Sigma_u^+ - X^2\Sigma_g^+$ - System des N₂⁺-Molekülions tritt hier zwischen 382,5 nm und 389 nm eine dem CN-Radikal zuzuordnende Bande mit Maxima bei 386,2 nm, 387,1 nm sowie 388,3 nm auf. Abbildung 5-30 a zeigt zum Vergleich ein unter gleichen Bedingungen aufgenommenes Spektrum einer Entladung in reinem Stickstoff.

Abbildung 5-31. OES-Spektren von Gasentladungen in Stickstoff + 5 Vol.% Tetrafluormethan (CF₄) als Funktion der HF-Leistungsdichte. a) 55 W/cm²; b) 67 W/cm²; c) 76 W/cm². – 750 Einzelmessungen à 990 μ s, 1200-Linien/mm-Gitter, 10 μ m Eintrittsspalt. MEA Typ S-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 15 μ m, Elektrodenabstand: 70 μ m, Elektrodenbreite: 900 μ m, Elektrodenunterätzung: 60 μ m, Schutzschicht: 0,5 μ m Al₂O₃).

Es wurde untersucht, wie die Intensität der CN-Bande von der Höhe der eingekoppelten HF-Leistung abhängt. Das Ergebnis zeigt Abbildung 5-31 a–c. Die Entladungs- und Messparameter sind die gleichen wie für Abbildung 5-29 bzw. 5-30. Dargestellt ist das Spektrum der Entladung für Leistungsdichten von 55 W/cm² (Abb. 5-31 a), 67 W/cm² (Abb. 5-31 b) und 76 W/cm² (Abb. 5-31 c). Als Maß für die Abhängigkeit der Intensität der CN-Bande von der HF-Leistung wurde das Intensitätsverhältnis des Maximums bei 388,3 nm zum 0–0-Übergang im *B–X*-System des N₂⁺ bei 391,44 nm gewählt. Dieses Verhältnis nimmt mit steigender HF-Leistung zu (siehe auch Abbildung 5-32). Während es bei 55 W/cm² noch kleiner als eins ist (0,82), haben sich die Intensitätsverhältnisse bei 76 W/cm² umgekehrt (1,42). Damit besteht die Möglichkeit, die Bildung dieses unerwünschten Abbauproduktes, die durch höhere HF-Leistungen offenbar begünstigt wird, *in situ* zu kontrollieren bzw. entsprechend zu steuern. Als weitere Parameter, welche die CN-Bildung beeinflussen, könnten hier noch z. B. die Gasdurchflussrate oder der CF₄-Gehalt des Gasgemisches untersucht werden.

Abbildung 5-32. Intensitätsverhältnis CN (388,3 nm) : N₂⁺ (391,44 nm) in OES-Spektren von Gasentladungen in Stickstoff + 5 Vol.% Tetrafluormethan (CF₄) als Funktion der HF-Leistungsdichte. – MEA Typ S-IMT (Trägermaterial: Glas, Elektrodenmaterial: Kupfer, Elektrodendicke: 15 µm, Elektrodenabstand: 70 µm, Elektrodenbreite: 900 µm, Elektrodenunterätzung: 60µm, Schutzschicht: 0,5 µm Al₂O₃).

5.3 Diskussion der Ergebnisse: MSE im DC-Betrieb

Neben der Erfassung der grundlegenden Charakteristik der mit Mikrostrukturierten Elektrodensysteme erzeugten Gasentladungen bestand eine wesentliche Zielsetzung der im DC-Betrieb durchgeführten Untersuchungen darin, Erkenntnisse über den Einfluss der verschiedenen geometrischen Parameter, insbesondere des Elektrodenabstandes, auf die Erzeugung der Entladungen zu erhalten. Die theoretische Grundlage bildet dabei die *pd*-Skalierung nach dem PASCHEN-Gesetz (s. Kap. 2.2.1). Entsprechend dieser Vorgabe wurden der Elektrodenabstand (10–400 μ m) und die Elektrodenbreite (Kathoden: 10–400 μ m, Anoden: 10–25 μ m) systematisch variiert.

Darüber hinaus sollte in Bezug auf die verwendeten Elektroden- und Trägermaterialien die Frage geklärt werden, inwiefern deren elektrische Eigenschaften einen Einfluss auf die Erzeugung und die Stabilität der Entladung ausüben. Eine systematische Erfassung war jedoch nur bedingt durchführbar, weil zum Zeitpunkt der Untersuchungen nur Kontakte zu kommerziellen Herstellern bestanden, bei denen in einem vertretbaren Zeit- und Kostenrahmen nur bestehende Standardprozesse zur Fertigung der MSE eingesetzt werden konnten. Somit wurde im DC-Betrieb neben Chrom (Schichtdicke: 0,1 μ m) nur noch ein weiteres Schichtsystem, bestehend aus einer Titan-Wolfram-Legierung mit einer Goldbeschichtung (Gesamtschichtdicke: 0,5–2 μ m), als Elektrodenmaterial getestet. Als Trägermaterial standen verschiedene Glassorten sowie Silizium zur Verfügung. In Tabelle 5-6 sind alle im DC-Betrieb untersuchten MSE mit den wichtigsten Parametern noch einmal zusammengefasst.

Im Folgenden soll zunächst der in verschiedenen Gasen experimentell ermittelte Arbeitsdruckbereich der MSE diskutiert werden. Dem vorangestellt ist eine kurze Zusammenfassung der angestellten Überlegungen hinsichtlich der Zusammenhänge zwischen Elektrodenabstand, Zündfeldstärke bzw. Zündspannung und dem daraus folgenden potenziellen Arbeitsdruckbereich.

Array-Typ	Kathoden- breite / μm	Anoden- breite / μm	Elektroden- abstand / μm	Elektrodenmate- rial (Dicke / μm)	Trägermaterial (Dicke / mm)
	100–400 ^{a)}		100–294 ^{a)}		
L-MZD	15–50 ^{b)}	12–25	15–50 ^{b)}	Cr (0,1)	Glas (1,6–2,3)
L-RH	100–400	12 und 25	50–154	TiW/Au (2)	Glas (2,3)
M-RBO	100–250	25	25–100	TiW/Au (0,5)	Si/SiO ₂ (0,5)
S-RBO	25–200 ^{a)} 10 und 400	10 und 25	25–200 ^{a)} 10 und 400 ^{b)}	TiW/Au (0,6)	Glas (1,0)

Tabelle 5-6. Im DC-Betrieb untersuchte MSE. – Zusammenstellung der systematisch variierten geometrischen Parameter und Angaben über die verwendeten Materialien.

^a Die Mehrzahl der MSE dieses Typs weist Abmessungen in dem angegebenen Bereich auf. ^b Mit diesen Abmessungen wurden nur wenige Exemplare des jeweiligen Array-Typs

gefertigt.

Arbeitsdruckbereich und visuelle Charakterisierung

Die Zündung einer elektrischen Gasentladung nach dem TOWNSEND-Mechanismus erfordert zwischen den Elektroden eine hinreichend hohe elektrische Feldstärke, die es erlaubt, vorhandene Primärelektronen in der beim jeweiligen Arbeitsdruck zur Verfügung stehenden mittleren freien Weglänge derart zu beschleunigen, dass nachfolgend durch Stoßionisierung des Gases eine lawinenartige Vermehrung der Ladungsträger stattfinden kann. Bei Drücken im Bereich von einigen 100 mbar bis 1000 mbar sind hierfür je nach Gasart Durchbruchfeldstärken von etwa 10^4 V/cm bis 10^6 V/cm notwendig (z. B. ≈ 30 kV/cm für Luft bei Atmosphärendruck). Sieht man die parallelen Elektrodenelemente der MSE vereinfacht als Plattenkondensatoren an, so sollten selbst bei vergleichsweise großen Elektrodenabständen von 100–300 µm (wie sie z. B. für die MSE vom Typ L-MZD charakteristisch sind) bereits mit Spannungen von 1–3 kV problemlos Feldstärken von 10⁵ V/cm zwischen den Elektroden realisiert werden können. Aufgrund der im Verhältnis zur Elektrodenbreite geringen Elektrodendicke (100:1 bis 4000:1 bei L-MZD MSE) entstehen darüber hinaus an den Elektrodenkanten Feldstärkeüberhöhungen, die eine nochmals um etwa eine Größenordnung höhere Feldstärke, hier also bis zu 10⁶ V/cm, erwarten lassen. Diese Feldüberhöhungen werden zudem durch die Kantenstruktur der Elektroden und damit durch den Fertigungsprozess der MSE beeinflusst, wobei von einem im Wesentlichen rechteckigen Elektrodenguerschnitt auszugehen ist. Somit stellen die Elektrodenkanten "Zündhilfen" dar, welche die zur Erzeugung einer elektrischen Entladung benötigte Zündspannung herabsetzen sollten. Neben dieser mehr qualitativen Betrachtung sollen im Hinblick auf den potenziellen Arbeitsdruckbereich der MSE nun auch die PASCHEN-Kurven herangezogen werden. Bei p = 1000 mbar und einem Elektrodenabstand von z. B. $d = 100 \,\mu\text{m}$ berechnet sich pd zu 10 mbar · cm. Bei diesem Wert ergibt sich für Stickstoff eine Zündspannung von etwa 1300 V, während für eine Entladung in den Edelgasen Helium ($U_z = 270$ V) oder Neon $(U_z = 200 \text{ V})$ nur Zündspannungen von deutlich unter 300 V aufgebracht werden müssen.

Aus den vorangegangenen Überlegungen ergibt sich, dass es mit MSE bereits mit Elektrodenabständen im Bereich weniger 100 µm und mit Spannungen von 1–3 kV prinzipiell möglich sein sollte, Entladungen in einem weiten Druckbereich bis zu einem Druck von 1000 mbar zu erzeugen. Im Rahmen dieser Arbeit ist es mit DC-betriebenen MSE jedoch nur mit Einschränkungen gelungen, dieses experimentell zu realisieren. Die Ergebnisse sowie die bestehenden offenen Fragestellungen zur Plasmaerzeugung mit MSE im DC-Betrieb werden im Folgenden näher diskutiert.

Der Druckbereich, in dem mit DC-betriebenen MSE (stabile) Entladungen erzeugt werden können, wurde mit den Typ L-MZD Arrays (Glasträger, Chromelektroden) erstmals grundlegend in Helium, Neon, Argon, Krypton, Xenon, Stickstoff und Wasserdampf bestimmt, wobei die systematische Untersuchung der Abhängigkeit von geometrischen Parametern noch nicht im Vordergrund stand. Entsprechend bewegen sich diese Parameter in einem vergleichsweise engen Bereich: Die Mehrzahl der MSE besitzt Elektrodenabstände zwischen 100 μ m und etwa 300 μ m, Kathoden mit einer Breite zwischen 100 μ m und 400 μ m sowie Anoden mit Breiten zwischen 12 µm und 25 µm. Neben der allgemeinen visuellen Charakterisierung des Plasmas bzw. dessen druckabhängigen Verhaltens wurden hierbei auch erste Informationen über die elektrischen Eigenschaften, wie z. B. über die zum Betrieb benötigte Flächenleistungsdichte, erhalten. Die höchsten Betriebsdrücke sind in den beiden Edelgasen Helium und Neon erreicht worden, wo sich mit den 50 mm \times 50 mm großen MSE flächige. homogene Plasmen bis zu einem Druck von etwa 50 mbar stabil betreiben lassen. In den übrigen oben genannten Gasen liegt der maximale Betriebsdruck für eine flächige, stabile Entladung je nach Art des Gases im Bereich von 5 mbar bis 15 mbar und damit um einen Faktor 3 bis 10 unter dem in Helium bzw. Neon erzielbaren Druck.

Betrachtet man die realisierten Betriebsdrücke zunächst relativ zueinander, so lässt sich das Ergebnis sofort erklären, wenn die untersuchten Gase nach deren Art bzw. deren Ionisierungsenergien in drei Gruppen eingeteilt werden: Die erste Gruppe bilden dabei die beiden leichten Edelgase Helium und Neon, eine zweite die schwereren Edelgase Argon, Krypton und Xenon und eine dritte Gruppe schließlich Stickstoff sowie Wasserdampf als Vertreter der molekularen Gase. Die beiden leichteren Edelgase Helium und Neon zeichnen sich durch die höchsten bei Gasen beobachtbaren ersten Ionisierungsenergien von 24,6 eV (Helium) bzw. 21,6 eV (Neon) aus. Obwohl die Ionisierungsenergien der schwereren Edelgase Argon, Krypton und Xenon um 6–10 eV unter denen des Heliums und des Neons liegen, fallen sie dennoch relativ hoch aus, wie ein Vergleich mit den Zahlenwerten molekularer Gase verdeutlicht: Argon (15,8 eV), Stickstoff (15,6 eV), Krypton (14 eV), Sauerstoff (12,5 eV), Xenon (12,1 eV), Stickstoffdioxid (11 eV) und Stickstoffmonoxid (9,5 eV). Trotz der verhältnismäßig hohen Ionisierungsenergien können in Edelgasen Gasentladungen nach dem TOWNSEND-Mechanismus bei niedrigeren Feldstärken erzeugt werden als in molekularen Gasen. Ein Grund hierfür ist, dass die in eine Edelgasentladung eingespeiste elektrische Energie nicht in die Anregung von Rotations- bzw. Schwingungszuständen fließen kann, wie dies bei molekularen Gasen möglich ist und was dort u. U. zu erheblichen Leistungsverlusten in Form von Wärme führen kann. Einen "Verlustprozess" stellt bei den Edelgasen die elektronische Anregung dar. Da vom Helium zum Xenon hin die Anzahl der elektronisch anregbaren Zustände zunimmt, die Energie des niedrigsten angeregten Zustandes jedoch abnimmt, gewinnt dieser Kanal bei den schwereren Edelgasen zunehmend an Bedeutung. So besitzt der niedrigste angeregte Zustand des Heliums (³S₁) eine Energie von 19,8 eV, der des Xenons (³P₂) dagegen eine Energie von nur noch 8,3 eV. Allerdings sind gerade bei Edelgasen auch metastabile Anregungszustände von Bedeutung. Aufgrund der geltenden Auswahlregeln ist hier eine Rückkehr in den elektronischen Grundzustand durch spontane Emission eines Photons entsprechender Wellenlänge verboten, so dass die Strahlungslebensdauer von Atomen in metastabilen Anregungszuständen bis zu einige
Sekunden betragen kann. In diesem Fall können neben der direkten Ionisierung auch Stufenionisierungsprozesse ablaufen, wodurch die Zündung bzw. die Aufrechterhaltung einer Gasentladung erleichtert wird.

Insgesamt sind Edelgase, und hierbei insbesondere Helium und Neon, also von Vorteil, wenn mit geringen Leistungsdichten Entladungen erzeugt werden sollen. Andererseits bedeutet dies, dass mit einer konstanten Leistungsdichte in Edelgasen ein höherer Betriebsdruck erreicht werden kann als dies beispielsweise in Stickstoff der Fall ist. Genau dies trifft für die MSE zu und daraus leitet sich eine zum heutigen Zeitpunkt noch nicht gelöste Aufgabenstellung bei der Verwendung von MSE als DC-Plasmaquelle ab. Derzeit können MSE wie sie im Rahmen dieser Arbeit für den DC-Betrieb verwendet wurden mit maximalen Flächenleistungsdichten von etwa 50 mW/cm² (Typ L-MZD) bzw. 650 mW/cm² (Typ S-RBO) betrieben werden, wenn großflächige, homogene Plasmen erzeugt werden sollen. Mit einer solchen Leistungsdichte ist in Helium und Neon ein Betriebsdruck von 40–50 mbar realisierbar, in den schwereren Edelgasen können maximal 10–15 mbar und in molekularen Gasen wie Stickstoff 5–10 mbar erreicht werden. Im Folgenden soll nun das druckabhängige bzw. leistungsabhängige Erscheinungsbild der MSE-Entladung näher erläutert werden.

Ausgangspunkt hierfür sei eine flächige, homogene Entladung bei einem gegebenen Druck *p* und einer gegebenen Flächenleistungsdichte P_A , beispielsweise eine Heliumentladung bei $p \approx 10$ mbar und $P_A \approx 20$ mW/cm². Wird die Leistungsdichte – durch Erhöhung der Spannung an der Hochspannungsquelle – bei konstantem Druck nun kontinuierlich gesteigert, fließt bei einer nahezu konstanten Brennspannung ein größerer Entladungsstrom (s. Abb. 5-1), wodurch auch die Anzahl derjenigen Elektronen steigt, die aufgrund ihrer kinetischen Energie in der Lage sind, eine elektronische Anregung der Gasatome hervorzurufen. Folglich wird naturgemäß eine Zunahme der von der Entladung emittierten Lichtintensität beobachtet. Entsprechend führt eine kontinuierliche Reduzierung von P_A zunächst zu einer Lichtemission geringerer Intensität, bis schließlich unterhalb einer vom Gasdruck abhängigen Grenze der fließende Strom so klein wird, dass die Glimmentladung in eine Dunkelentladung übergeht und keine Emission mehr beobachtet wird.

Bei Leistungsdichten ab etwa 50 mW/cm² (bei Typ L-MZD MSE entspricht dies in Helium einem Entladungsstrom von 1,5 mA bis 2 mA) bzw. 650 mW/cm² (Typ S-RBO) bilden sich an den Elektrodenkanten zunächst vereinzelt Lichtpunkte (ca. 1 mm × 1 mm) aus, die sich durch ihre deutlich höhere Intensität von der homogenen Entladung abheben. Wird die Leistung weiter gesteigert, steigt zum einen auch die Zahl der Lichtpunkte, zum anderen entwickeln sich nun aus einzelnen Lichtpunkten Überschläge, die an der betreffenden Stelle zu einer Beschädigung der Elektroden führen (vgl. Abb. 5-7 a und Abb. 5-9 b, d). Bei höheren Leistungen kann dies soweit führen, dass durch das Verschmelzen der Mikroelektroden ein Kurzschluss entsteht, so dass das Array nicht mehr zur Plasmaerzeugung eingesetzt werden kann. In diesem Zusammenhang ist es sehr wahrscheinlich, dass durch den Fertigungsprozess bedingte, lokale Unebenheiten an den Elektrodenkanten, die bei geringeren Leistungsdichten als Zündhilfen den Entladungsprozess positiv beeinflussen, bei höheren Leistungsdichten eher zu negativen Auswirkungen führen. Die fließenden Ströme haben mit 1,5-2 mA (Typ L-MZD MSE) offensichtlich eine Größenordnung erreicht, bei der die infolge der hohen Widerstände und der geringen Abmessungen der Elektrodenelemente nicht zu vernachlässigende Wärmeentwicklung gerade noch vertretbar ist. Eine weitere lokale Wärmeentwicklung führt zu einer erhöhten Stromdichte, die wiederum zu einer weiteren Erwärmung führt usw., bis es schließlich zum Überschlag kommt.

Während also die Flächenleistungsdichte gegenwärtig den limitierenden Faktor bei der Plasmaerzeugung mit DC-betriebenen Mikrostrukturierten Elektrodensystemen darstellt, kann der Druck durchaus über die oben angegebenen Grenzen hinaus erhöht werden, dabei nimmt jedoch bei konstanter Leistung die flächige Ausdehnung der Entladung mit zunehmenden Druck ab. Im Allgemeinen kann nach einer Druckerhöhung die ursprüngliche Ausdehnung der Entladung über die gesamte Array-Oberfläche wiederhergestellt werden, wenn die eingespeiste Leistung erhöht wird. Sind die weiter oben genannten Drücke erreicht, ist dies jedoch nicht mehr möglich, da dann die für den jeweiligen Array-Typ geltende Grenze für die Flächenleistungsdichte überschritten werden müsste. Somit können dann nur noch Plasmen erzeugt werden, welche die Array-Oberfläche nur teilweise bedecken, bis letztendlich ab einem bestimmten Druck nur noch Plasmen mit einer Flächenausdehnung von wenigen mm² erzeugt werden können. Der Druck, bei dem solche Gasentladungen geringer Ausdehnung gerade noch gezündet werden können, ohne dass eine gravierende Beschädigung der Arrays eintritt, beträgt in Helium und Neon 100–150 mbar, in den übrigen untersuchten Gasen etwa 25 mbar bis 50 mbar. Wenn ein Plasma nur einen Teil der Array-Oberfläche bedeckt, ist dies in vielen Fällen damit verbunden, dass auch eine schnelle Bewegung des Plasmas über die gesamte aktive Oberfläche erfolgt, die vermutlich ebenfalls auf lokale Inhomogenitäten in der Elektrodenstruktur zurückzuführen ist.

Generell gilt für alle untersuchten Arrays und Gase, dass sich die Entladung mit einer vom Druck abhängigen typischen Dicke von etwa 0,5–1,5 mm direkt über der MSE-Oberfläche ausbildet. Diese druckabhängige Ausdehnung der MSE-Entladungen orthogonal zur Array-Oberfläche ("z-Ausdehnung") bleibt im Rahmen der visuellen Charakterisierung abschließend zu diskutieren. Bei Drücken im Bereich von etwa 1–15 mbar kann die Zunahme der Ausdehnung mit sinkendem Druck bzw. eine Abnahme mit steigendem Druck mit bloßem Auge beobachtet werden. Bei höheren Drücken ist die Dicke des Plasmas dann so gering ($\leq 0,5$ mm), dass Änderungen visuell nicht mehr wahrnehmbar sind.

Die Abhängigkeit der z-Ausdehnung vom Druck wird verständlich, wenn der zur Ausbildung der Entladung führende TOWNSEND-Mechanismus unter Berücksichtigung der unterschiedlichen Breiten von Anoden und Kathoden noch einmal betrachtet wird. Infolge der sehr geringen Anodenbreite (10–25 μ m) können sich dort sehr hohe elektrische Felder ausbilden, die zu effektiven Lawinenprozessen in diesem Bereich führen. Für den zunächst betrachteten Fall der Dunkelentladung gilt dann, dass umso mehr Sekundärelektronen-Generationen gebildet werden, je höher die angelegte Spannung gewählt wird, und in desto größerer Entfernung von der Anode findet aufgrund der höheren Feldstärken der Lawinenprozess statt. Sobald die leicht beweglichen Elektronen über eine Driftbewegung entlang der elektrischen Feldlinien die Anode erreicht haben, verbleibt eine positive Raumladung über dem Anodenstreifen, die über die benachbarten breiteren Kathodenstreifen abgebaut werden kann.

Sobald sich jedoch eine selbstständige Glimmentladung ausgebildet hat, stellt sich eine Brennspannung ein, die beispielsweise zwischen 1 mbar und 10 mbar nur eine geringe Druckabhängigkeit zeigt (s. Abb. 5-1), so dass das elektrische Feld an der Array-Oberfläche dadurch kaum beeinflusst wird und somit für die Ausdehnung der Entladung allein die freie Weglänge der Ladungsträger, d. h. der Druck entscheidend ist. Je niedriger der Druck ist, desto geringere Feldstärken werden aufgrund der größeren freien Weglänge benötigt, um den Lawinenprozess zu initiieren. Diese geringeren Feldstärken werden auch in einer größeren Entfernung vom Array erreicht, so dass dort bei niedrigem Druck bereits ein Entladungsprozess stattfinden kann. Mit zunehmenden Druck, d. h. kleiner werdender Weglänge, werden zum Betrieb der Entladung höhere Feldstärken benötigt, die nur in unmittelbarer Nähe der Array-Oberfläche erreicht werden, so dass die Ausdehnung der Entladung dann abnimmt. Aufgrund der geringen Abmessungen nur schwer erfassbar und deshalb völlig ungeklärt ist, ob und inwiefern es in diesem Zusammenhang zur Ausbildung unterschiedlicher Plasmazonen kommt, wie es von der Niederdruck-Glimmentladung her bekannt ist.

Einfluss des Elektrodenmaterials und des Herstellungsprozesses

Ein direkter Einfluss des Elektrodenmaterials auf die elektrischen Parameter (z. B. Zündspannung, Leistungsbedarf usw.) bzw. auf die Stabilität der Gasentladungen konnte im Rahmen dieser Arbeit nicht festgestellt werden. Gleichwohl lassen sich an dieser Stelle einige Vor- und Nachteile der beiden verwendeten Elektrodenmetalle festhalten, die bei zukünftigen Untersuchungen Berücksichtigung finden können. Es sollte – unter der Voraussetzung, dass entsprechende Fertigungsmöglichkeiten bestehen – versucht werden, den Aspekt des Elektrodenmaterials noch etwas intensiver zu erforschen. Eine weitaus größere Rolle scheint dagegen der Herstellungsprozess zu spielen, doch auch hier besteht weiterer Forschungsbedarf. Weiterhin sind zum jetzigen Zeitpunkt noch keine Untersuchungen zur Langzeitstabilität der unterschiedlichen Elektrodenmetalle durchgeführt worden.

Chrom bietet als Elektrodenmaterial den Vorteil, dass es zum einen sehr gut auf Glas haftet und zum anderen die Elektrodenoberfläche relativ hart und damit sehr unempfindlich gegenüber mechanischen Einflüssen ist, so dass die L-MZD MSE sich als gut handhabbar und robust herausstellten und z. B. bei Bedarf problemlos mit normalen, ggf. mit einem Lösemittel getränkten Papiertüchern gereinigt werden konnten, wohingegen Goldelektroden deutlich empfindlicher sind. Von entscheidender Bedeutung ist aber, dass die Chromelektroden andererseits im Plasmabetrieb von korrosiven Gasen, wie z. B. durch die in Wasserdampfentladungen gebildeten OH-Radikale, leicht angegriffen, d. h. oxidiert werden. Darüber hinaus findet aufgrund des hohen Sputterkoeffizienten des Chroms insbesondere in Edelgasentladungen leicht ein Abtrag der Elektroden statt (s. u.), so dass die Standzeiten der Arrays verkürzt werden. Somit sollte zukünftig eine deutlich höhere Schichtdicke als sie in dieser Arbeit zur Verfügung stand angestrebt werden. Dies ist auch deshalb von Vorteil, weil Chrom im Vergleich zu beispielsweise Gold oder Kupfer einen 6fach höheren OHMschen Widerstand hat und entsprechende Wärmeverluste auftreten.

Da von den MSE des Typs L-MZD infolge der hohen Herstellungskosten nur eine begrenzte Anzahl gefertigt wurde, bestand die Notwendigkeit, diese unter der Vermeidung von Beschädigungen nacheinander in den unterschiedlichen Gasen zu betreiben. Dabei stellte sich im Laufe der Untersuchungen heraus, dass die Neigung der Strukturen zu Überschlägen bei höheren Drücken bzw. Leistungsdichten in der Regel positiv beeinflusst werden kann. MSE, die zunächst bei niedrigen Drücken mit geringen Leistungsdichten – vorzugsweise in Helium oder Neon - betrieben wurden, zeigten anschließend bei höheren Drücken tendenziell eine geringere Neigung zu Überschlägen als neue Arrays. Offenbar findet unter den moderaten Betriebsbedingungen eine "Selbstkonditionierung" statt, bei der durch den Herstellungsprozess bedingte scharfe Ecken und Kanten "schonend" durch das Plasma abgetragen werden, so dass nachfolgend keine zu extremen Feldüberhöhungen mehr auftreten können. Diese Prozesse, vornehmlich handelt es sich dabei um Sputterprozesse, führen aber beispielsweise bei den dünnen Chromelektroden auch dazu, dass diese nach mehrstündigem Betrieb nahezu vollständig abgetragen werden, wie die in Abbildung 5-6 a-d auf Seite 66 gezeigten lichtmikroskopischen Aufnahmen verdeutlichen. Andererseits geben die entstandenen Geometrien zum Teil auch darüber Auskunft, inwiefern die bestehenden MSE-Designs zukünftig weiter optimiert werden könnten. Ein Beispiel hierfür ist Abbildung 5-6 c, die im Bereich der Kathodenenden die ursprüngliche (dunkel) sowie die durch den Abtrag der Elektroden entstandene (hell) Geometrie zeigt.

Neben Chrom wurde ein TiW/Au-Schichtsystem als Elektrodenmaterial eingesetzt, wobei bei den MSE vom Typ L-RH (Glasträger) eine galvanische Verstärkung der Elektroden auf eine Dicke von 2 µm vorgenommen wurde. Mit diesem Array-Typ war es jedoch nicht möglich,

großflächige Entladungen zu erzeugen. Bereits bei relativ geringen Leistungsdichten von etwa 20 mW/cm² traten im Bereich der Kathodenenden die oben beschriebenen punktförmigen Entladungen bzw. Überschläge auf, die sehr schnell zu einer Beschädigung der Elektroden führten (s. Abb. 5-7 auf S. 67). Folglich konnte hier auch nicht das Prinzip der "Konditionierung" greifen. Möglicherweise wird durch die galvanische Verstärkung der Elektroden eine allzu inhomogene Kantenstruktur erzeugt, so dass die Feldüberhöhungen lokal dann zu stark sind. Nähere Untersuchungen hierzu wurden nicht durchgeführt. An dieser Stelle kann aber festgehalten werden, dass bei den Arrays der Typen M-RBO (Siliziumträger) und S-RBO (Glasträger), deren Elektroden aus dem gleichen TiW/Au-Schichtsystem, jedoch ohne galvanische Verstärkung, gefertigt waren, die beschriebene Problematik nicht aufgetreten ist. Allerdings sollte der Einsatz galvanisch verstärkter Strukturen zukünftig intensiver untersucht werden, da aufgrund der größeren Schichtdicke der Widerstand der Elektroden sinkt und somit das Ausmaß der Wärmeproduktion durch OHMsche Verluste reduziert werden kann, was wiederum höhere Leistungsdichten bzw. Betriebsdrücke verspricht. Nachteilig dabei ist, dass speziell dickere Goldschichten relativ empfindlich gegenüber mechanischen Einflüssen sind. Und letztendlich sind bei Arrays mit galvanisch verstärkten Goldelektroden in größerer Stückzahl ggf. die Herstellungskosten – auch im Hinblick auf spätere Anwendungen – von Interesse.

Insgesamt ist festzustellen, dass bei den Typ S-RBO Arrays mit den dickeren TiW/Au-Elektroden mit etwa 100–650 mW/cm² eine deutlich höhere Flächenleistungsdichte zum Betrieb der Entladungen aufgewendet werden kann als bei den Typ L-MZD Arrays mit sehr dünnen Chromelektroden (15–50 mW/cm²). Aufgrund des geringeren Widerstandes der Goldelektroden sind die OHMschen Verluste kleiner, so dass die lokale Erwärmung geringer ausfällt und damit auch die Neigung zu Überschlägen gesenkt wird. Kommt es dennoch zu Überschlägen, zeichnen sich die dickeren Goldelektroden durch eine höhere Stabilität aus.

Die experimentellen Untersuchungen zum Zündverhalten der Plasmen beim Betrieb mit Gleichspannung zeigen, dass MSE mit ihren parallel angeordneten Elektrodenelementen bei hohen Drücken teilweise nachteilige Eigenschaften besitzen: Nur äußerst homogene Elektrodenstrukturen erlauben die Ausbildung eines großflächigen Plasmas. In der Realität zündet das Plasma meist zuerst lokal an einzelnen Inhomogenitäten, wodurch die an den übrigen Elektroden anliegende Spannung sinkt und die Zündung des Plasmas in den restlichen Bereichen verhindert wird. Um eine elektrische Entkopplung zu erreichen, wurden verschiedene Arrays unter Variation des Kathodenvorwiderstandes realisiert. Diese als Erfolg versprechend angesehene Entkopplung der einzelnen Elektroden über Vorwiderstände konnte nur bedingt erreicht werden. Der Grund hierfür ist die Tatsache, dass gerade an den Vorwiderständen aufgrund der geringen Abmessungen hohe OHMsche Verluste auftreten, die häufig zum Schmelzen der Elektrode an dieser Stelle führten (vgl. Abb. 5-9 a, c, e).

Einfluss des Trägermaterials

Beim Einsatz von Mikrostrukturierten Elektrodensystemen als Gasdetektor hat sich gezeigt, dass die Art des verwendeten Glasträgers von großer Bedeutung ist, wobei v. a. die elektrischen Eigenschaften, d. h. dessen (Oberflächen-)Widerstand, als auch die Zusammensetzung eine wichtige Rolle spielen. Durch eine Anlagerung von Ionen auf der unbedeckten Substratoberfläche kann sich diese stark positiv aufladen, so dass der Gasverstärkungsprozess beeinflusst wird. Dieser Effekt kann durch Substrate mit einem spezifischen Widerstand $\leq 10^{14} \,\Omega \cdot$ cm verhindert werden, welcher die Mobilität angelagerter Ionen an der Oberfläche erhöht, so dass diese zur Kathode gelangen und dort rekombinieren können. In den meisten Gläsern mit diesem Widerstand sind die Ladungsträger jedoch

Alkali-Ionen (v. a. Natrium und Kalium), so dass unter dem Einfluss der hohen elektrischen Felder langfristig eine elektrolytische Zersetzung des Trägers stattfindet, was wiederum die Gasverstärkung beeinflusst [OED 88].

Beim Betrieb der MSE als DC-Plasmaquelle konnte im Rahmen der durchgeführten Untersuchungen bei den unterschiedlichen Gläsern kein Einfluss der Materialparameter auf die elektrischen Eigenschaften des Plasmas bzw. auf den möglichen Betriebsdruck oder die Betriebsdauer festgestellt werden. Neben einem alkalifreien Borsilikat-Glas mit einem spezifischen Widerstand von $10^{16} \Omega \cdot \text{cm}$ und einem Oberflächenwiderstand von $10^{13} \Omega$ wurde ein so genanntes Natronkalkglas (*engl.* sodalime glas) mit einem Gehalt von 8 % Na₂O und 9 % K₂O verwendet. Letzteres weist im Vergleich zum Borsilikat-Glas einen um drei Größenordnungen geringeren Oberflächenwiderstand ($10^{10} \Omega$) sowie einen um eine Größenordnung geringeren spezifischen Widerstand ($10^{15} \Omega \cdot \text{cm}$) auf. Allerdings ist der spezifische Widerstand der Gläser um eine bzw. zwei Größenordnungen größer als der von A. OED angegebene Wert von $10^{14} \Omega \cdot \text{cm}$ (s. o.), so dass eine Anlagerung von Ionen auf der Substratoberfläche und damit eine Verminderung der elektrischen Feldstärke durch die entstehende Raumladung nicht ausgeschlossen werden kann.

Beim Übergang von Glas zu Silizium als Trägermaterial zeigten sich dagegen deutliche Unterschiede. Plasmen mit einer Ausdehnung über die gesamte aktive Array-Oberfläche konnten in Helium nur bis zu einem Druck von 5–7 mbar erzeugt werden. Bei Drücken um die 20 mbar konnten zwar noch Plasmen betrieben werden, die etwa 10 % der Array-Oberfläche bedecken, jedoch traten hierbei bereits erste Beschädigungen der Arrays auf. Auf den Einsatz anderer Gase wurde hier verzichtet, da Helium aufgrund seiner Eigenschaften zur Erzeugung von Gasentladungen besonders vorteilhaft ist (s. o.). Aus den durchgeführten Untersuchungen ergibt sich, dass Silizium aufgrund seiner elektrischen Eigenschaften in der vorliegenden Form (0,5 µm Dicke, dünne Oxidschicht) als Trägermaterial für MSE als weniger geeignet einzustufen ist. Möglicherweise kommt es, bedingt durch die hohen Spannungen, zu Ladungsverschiebungen im Substrat. Mit Glasträgern wurden entsprechende Phänomene, z. B. ein Anstieg der Zündspannung, bisher nicht beobachtet. Hier sind Tests mit einer verstärkten SiO₂-Schicht zur besseren elektrischen Isolierung angezeigt. Problematisch sind dabei jedoch die langen Prozesszeiten, die zur Herstellung dieser Schichten benötigt werden, so dass bis auf weiteres darauf verzichtet wurde. Eine Trockenoxidation kommt nicht in Frage, da die Prozesszeit für eine Oxiddicke von nur 0,1 μm bereits über 10 Stunden liegt (bei den Typ M-RBO MSE betrug die Dicke der Oxidschicht ca. 3 µm). Demnach werden dicke Oxidschichten im Allgemeinen mittels Feuchtoxidation (Anreicherung des Reaktionsraumes mit Wasserdampf) hergestellt. Als nachteilig könnte sich hierbei dann jedoch herausstellen, dass die so gebildeten Schichten eine geringere Dichte und eine geringere Durchbruchfeldstärke aufweisen [MENZ 97].

Einfluss der Geometrieparameter

Anhand der Typ S-RBO MSE (Glassubstrat, TiW/Au-Elektroden) mit einer Fläche von 10 mm \times 10 mm wurde in Helium der Einfluss der Elektrodengeometrie, d. h. der Einfluss der Elektrodenbreite und v. a. des Elektrodenabstandes, im Hinblick auf den möglichen Betriebsdruck systematisch untersucht. Die Breite der Elektroden wurde ebenso wie der Elektrodenabstand im Bereich von 10 μ m bis 400 μ m variiert.

Mit den Typ S-RBO MSE wurden ähnliche Betriebsdrücke erreicht, wie schon zuvor mit den Typ L-MZD MSE. Flächige Plasmen lassen sich im Bereich von 20 mbar bis 40 mbar Helium betreiben. Obwohl also der Elektrodenabstand bzw. die Kathodenbreite um den Faktor 4

bzw. Faktor 8 variiert, erstrecken sich die erreichbaren Betriebsdrücke für homogene, flächige Entladungen nur über ein Intervall von 20 mbar, wobei zudem keine systematische Abhängigkeit erkennbar ist (s. Abb. 5-10, S. 76 und Abb. 5-11, S. 78). So weisen die drei Arrays, mit denen die höchsten Drücke von etwa 35 mbar erreicht werden konnten, sehr unterschiedliche Geometrieparameter auf. Die Arrays H2 und J3 haben zwar den gleichen Elektrodenabstand von 50 μm, unterscheiden sich jedoch mit 50 μm (H2) und 200 μm (J3) deutlich in der Kathodenbreite, wobei allerdings zu bemerken ist, dass beim Array H2 eine mehr als doppelt so hohe Spannung (–1300 V) zur Erzeugung der Gasentladung benötigt wurde wie beim Array J3 (– 600 V). Anhand des Arrays C3 zeigt sich, dass sich der gleiche Betriebsdruck durchaus auch mit einem sehr viel größeren Elektrodenabstand (200 μm) erreichen lässt. Die Kathodenbreite liegt hier mit 100 μm wiederum zwischen den Werten der Arrays H2 und J3. Ein signifikanter Einfluss der Elektrodengeometrie auf den maximal erreichbaren Arbeitsdruck der Strukturen konnte somit beim Betrieb mit Gleichspannung nicht festgestellt werden.

Aus dem Arbeitsdruckbereich von 20–40 mbar und einem Elektrodenabstand von 10 μ m bis 400 μ m ergibt sich ein *pd*-Intervall von etwa 0,02 mbar · cm bis 2 mbar · cm, in dem flächige, homogene Entladungen erzeugt werden können. Für den kleinsten bekannten Wert $pd \approx 2.7$ mbar · cm ergibt sich eine Zündspannung von ca. 270 V (das PASCHEN-Minimum mit 156 V liegt bei 5,3 mbar · cm). Für kleinere Werte ist ein starker Anstieg der Zündspannung zu erwarten, wie dies die PASCHEN-Kurven der anderen Gase zeigen. Im Experiment wurde jedoch entgegen dieser Erwartung in einem weiten pd-Bereich (p = 10 mbar), der mit 0,01-0,4 mbar · cm mehr als eine Größenordnung umfasst, eine vom Elektrodenabstand praktisch unabhängige und relativ niedrige Zündspannung von -300 V bis -500 V ermittelt, so dass das PASCHEN-Gesetz offenbar in diesem Fall keine Gültigkeit besitzt. Möglicherweise wird die Zündspannung so stark durch die an den Elektrodenkanten durch Inhomogenitäten hervorgerufenen Feldüberhöhungen bestimmt, dass im untersuchten Bereich praktisch kein Einfluss des Elektrodenabstandes auf die Zündspannung mehr vorhanden ist. Mit diesen niedrigen Spannungen lässt sich jedoch noch kein vollständig homogenes Plasma erzeugen, welches die gesamte Array-Oberfläche einnimmt, so dass die typischen Betriebsspannungen in der Regel höher sind (-600 V bis -1500 V).

Ein wichtiger Grund für die Abweichung der experimentellen Ergebnisse von den ursprünglichen Erwartungen ist sicherlich auch die Tatsache, dass die zur Abschätzung des theoretisch möglichen Arbeitsdrucks herangezogenen Daten, wie z. B. die PASCHEN-Kurven, im Allgemeinen mit makroskopischen Parallelplatten-Plasmareaktoren gewonnen wurden. Ebenso sind sehr einfache Beziehungen wie Gl. (1.2), die für solche Parallel-Anordnungen gelten, offenbar nur mit Einschränkungen auf Mikrostrukturierte Elektrodensysteme übertragbar. So herrscht beispielsweise bei MSE oberhalb der Substratoberfläche aufgrund der koplanaren Elektrodenanordnung keine homogene Feldstärkeverteilung vor, wie dies im Volumen zwischen zwei parallel angeordneten makroskopischen Elektroden vor dem Zünden einer Entladung der Fall ist.

Für Niederdruck-Glimmentladungen im Druckbereich zwischen ca. 0,01 mbar und 100 mbar sind Ströme zwischen 0,1 mA und 100 mA typisch. Die Brennspannung dieser Entladungen bewegt sich typischerweise zwischen 100 V und 1000 V. Diese Werte werden auch bei den mit MSE erzeugten Entladungen beobachtet. Die Brennspannung beträgt in Abhängigkeit vom Gas zwischen –200 V und –500 V, wobei in Helium und Neon eher eine niedrigere Spannung von –200 V bis –300 V beobachtet wird und sich in z. B. Argon und Stickstoff tendenziell höhere Spannungen einstellen. Mit sinkendem Druck wird ein Anstieg der Brennspannung beobachtet (vgl. Abb. 5-1). So steigt $U_{\rm B}$ in Helium bei einer Druckerhöhung von 3,7 mbar auf 8,4 mbar um 90 V von –210 V auf –300 V.

Neutralgastemperatur und Elektronenenergien

MSE-Entladungen wurden mittels optischer Emissionsspektroskopie charakterisiert, um u. a. Informationen über die auftretenden Elektronenenergien zu erhalten [GEBNER 98]. Die Messungen wurden in Edelgasen bei Drücken von 1–5 mbar durchgeführt. In Helium und Neon konnten dabei nur Übergänge der Atome beobachtet werden, Linien, die den positiv geladenen Ionen He⁺ bzw. Ne⁺ zuzuordnen wären, traten nicht auf. Im Unterschied dazu wurden bei den schwereren Edelgasen Argon, Krypton und Xenon zusätzlich zu den Übergängen der neutralen Atome ($np^5 [n+1]s^1 - np^5 [n+1]p^1$, n = 3, 4, 5 für Ar, Kr, Xe) auch Übergänge der einfach positiv geladenen Ionen Ar⁺, Kr⁺ und Xe⁺ beobachtet. Emissionen der zweifach positiv geladenen Spezies konnten jedoch nicht beobachtet werden. Die Energie des höchsten beobachteten angeregten Neon-Zustandes $(2p^53p^1)$ beträgt 18 eV. Die Anregung in diesen Zustand kann jedoch stufenweise über den 2p⁵3s¹-Zustand mit einer Energie von 16,6 eV erfolgen, so dass mindestens Elektronen mit dieser Energie auftreten müssen. Beim Helium sind die beobachteten Zustände mit den höchsten Energien zwischen 23,5 eV und 24 eV der 5 ³D_{3,2,1}-Zustand, gefolgt von 4 ¹D₂ und 4 ¹S₀. Um diese hochangeregten Zustände zu bevölkern, ist eine sequentielle Anregung über die niedrigsten angeregten Zustände des Heliums 2¹S₀ und 2³S₁ mit Energien von 20,6 eV und 19,8 eV möglich. Folglich muss wenigstens ein geringer Anteil der Elektronen im Plasma Energien von etwa 20 eV besitzen, die eine Anregung vom Grundzustand 1 ¹S₀ in die Zustände 2 ¹S₀ bzw. 2 ³S₁ bewirken können. Dies ist wohlgemerkt keine durchschnittliche Elektronenenergie, sondern repräsentiert den hochenergetischen Anteil einer Elektronenenergieverteilung. Das Auftreten von Ar⁺, Kr⁺ und Xe⁺ in den Entladungen wird verständlich, wenn die Ionisierungsenergien (s. o.) der Edelgase betrachtet werden. Nur Argon, Krypton und Xenon besitzen Ionisierungsenergien < 20 eV, so dass hier gemäß der aus dem Helium-Spektrum ermittelten Elektronenenergie von 20 eV ein Ionisierungsprozess stattfinden kann. Andererseits ist der Anteil der Elektronen mit Energien > 20 eV gering und somit werden Ionisierungsprozesse in Helium und Neon mit Ionisierungsenergien von 24,6 eV bzw. 21,6 eV sehr unwahrscheinlich.

Darüber hinaus ist die Temperatur der *angeregten* Spezies anhand von OH-Emissionsspektren bestimmt worden, die in einer Wasserdampfatmosphäre aufgenommen wurden [GEßNER 98]. Aus den Intensitäten der Bandenköpfe des $A^2\Sigma^+ - X^2\Pi$ -Systems bei 281,1 nm (v'= 1 \rightarrow v''= 0) und 306,4 nm (v'= 0 \rightarrow v''= 0) ergab sich hierbei gemäß der BOLTZMANN-Gleichung (5.1) eine Temperatur von etwa 3400 K für die angeregten Spezies.

Nachdem aus den beschriebenen Messungen Anhaltspunkte über die auftretenden Elektronenenergien bzw. über das Vorliegen hochangeregter Spezies erhalten werden konnten, standen schließlich Messungen zur Bestimmung der Neutralgastemperatur aus. Die Neutralgastemperatur wurde im Rahmen dieser Arbeit mit Hilfe der laserinduzierten Fluoreszenzspektroskopie (LIF) unter Verwendung eines Helium/NO- bzw.

Helium/Argon/NO-Gemisches (NO-Konzentration: 500 ppm) bei Gasdrücken von ca. 4 – 10 mbar bestimmt. Die Auswertung der Messungen mittels BOLTZMANN-Plot ergab, dass die Neutralgastemperatur im Fall des Helium/ NO-Gemisches im Rahmen der Messgenauigkeit nahezu der Umgebungstemperatur entspricht, während sie um etwa 90 K ansteigt, wenn Helium und Argon im Verhältnis 1:1 eingesetzt werden. Der geringfügige Anstieg der Temperatur in Anwesenheit des Argons ist auf dessen im Vergleich zum Helium schlechtere Wärmeleitfähigkeit zurückzuführen. Helium stellt als kleines Atom einen sehr guten Wärmeleiter dar, so dass in reiner Heliumatmosphäre eine schnelle Ableitung von entstehender Wärme an die Umgebung (z. B. an die Reaktorwände) erfolgt und eine Erwärmung des Gases praktisch nicht stattfindet.

Insgesamt bestätigen die Ergebnisse der LIF-Messungen die Erwartungen, dass es sich bei den mit MSE erzeugten Plasmen um Niedertemperaturplasmen handelt, bei denen sich die einzelnen Teilsysteme (Elektronen, Ionen, Neutralgas) untereinander nicht im thermischen

Gleichgewicht befinden. Die Energie wird gezielt den Elektronen zugeführt, so dass eine Ionisierung des Gases ohne wesentliche Temperaturerhöhung erfolgt, und Plasmen mit einer hohen Elektronentemperatur (ca. 10.000–100.000 K, geringe Anteile bis zu 200.000 K) und einer vergleichsweise niedrigen Neutralgastemperatur (ca. 300–400 K) gebildet werden. Diese Tatsache macht die MSE-Plasmen außerordentlich attraktiv für plasmagestützte technische Anwendungen.

5.4 Diskussion der Ergebnisse: MSE im HF-Betrieb

Beim Betrieb der MSE mit Gleichspannung konnte im Rahmen dieser Arbeit ein Druck von 150 mbar erreicht werden. Um den Arbeitsdruckbereich darüber hinaus bis auf 1000 mbar erweitern zu können, wurden in der Folge andere Spannungsversorgungen als Alternativen getestet. Hierzu sind Hochspannungsquellen zum Betrieb der MSE mit niederfrequenter Wechselspannung im kHz-Bereich (9,55 kHz) bzw. mit gepulster Gleichspannung entworfen und in der institutseigenen Elektronikwerkstatt realisiert worden. Der Arbeitsdruckbereich konnte durch den Einsatz dieser Spannungsquellen zwar leicht zu höheren Drücken hin erweitert werden, jedoch war ein Betrieb bei Atmosphärendruck damit nicht erreichbar. Diese Möglichkeiten wurden über das Anfangsstadium hinausgehend nicht weiter verfolgt und sollen deshalb an dieser Stelle auch nicht näher diskutiert werden. Zukünftig sollten jedoch auch mit diesen Spannungsquellen ausführlichere Untersuchungen durchgeführt werden.

Im weiteren Verlauf wurde der Betrieb der MSE mit hochfrequenter Wechselspannung (HF, 13,56 MHz) untersucht, welcher schließlich das angestrebte Ziel der Erzeugung von großflächigen Gasentladungen bei höheren Drücken und insbesondere bei Atmosphärendruck (mit einigen Arrays bis zu Drücken von 1500 mbar) erlaubte. Dazu wurden Elektroden-Arrays eingesetzt, die vom Institut für Mikrotechnik der TU Braunschweig nach Designvorgaben gefertigt wurden. Die Ergebnisse dieser Untersuchungen werden nachfolgend näher diskutiert.

Bei Atmosphärendruck können Entladungen gegenwärtig in Helium und Neon erzeugt werden. Zu deren Betrieb sind nur moderate Zünd- bzw. Brennspannungen im Bereich von wenigen 100 V und damit auch sehr geringe HF-Flächenleistungsdichten erforderlich. Die Brennspannung einer Helium- bzw. Neonentladung beträgt nur etwa 200 V (effektive Spannung), die typischerweise benötigte Leistungsdichte etwa 3–6 W/cm² (Typ M-IMT MSE). Außerdem ist es problemlos möglich, Entladungen bei Atmosphärendruck mit Helium als Trägergas zu erzeugen, dem bis zu 10 Vol.% Stickstoff, Sauerstoff oder Argon zugemischt sind, ohne dass die Stabilität der Entladung beeinträchtigt wird. Der Betrieb der Entladungen war in den genannten Gasen bzw. Gasgemischen prinzipiell mit allen zur Verfügung stehenden MSE vom Typ M-IMT bzw. S-IMT bei Atmosphärendruck möglich. Im Gegensatz zum DC-Betrieb kann jedoch festgestellt werden, dass größere Elektrodenabstände tendenziell auch größere Leistungsdichten erfordern, um eine Entladung zu zünden bzw. zu betreiben (so wie man es bei Gültigkeit des PASCHEN-Gesetzes erwarten würde). Systematische Untersuchungen hierzu stehen jedoch noch aus.

Bei den anfangs verwendeten geringen Schichtdicken (2 µm) war die zur Erzeugung von Helium- bzw. Neon-Atmosphärendruckplasmen aufzuwendende Flächenleistungsdichte insofern von Bedeutung, als dass hohe Dichten, insbesondere bei geringen Gasflüssen (\leq 50 sccm) und bei längeren Betriebsdauern (1–2 h), zu einer zu starken Erwärmung und damit zur Zerstörung der Arrays führen konnten. Als Elektrodenmetall kam deshalb nach einigen Tests mit Gold, dass ohne galvanische Verstärkung nur bis zu Schichtdicken von etwa 2 µm zur Verfügung stand, später nahezu ausschließlich Kupfer zum Einsatz, bei welchem die Schichtdicke der Elektroden durch galvanische Verstärkung problemlos erheblich erhöht werden konnte. Auf diese Weise konnten Arrays mit Elektrodenschichtdicken von bis zu 35 µm hergestellt und eine Optimierung der Standzeiten erreicht werden.

Der Betrieb mit anderen Gasen, wie beispielsweise Argon oder Stickstoff, erfordert eine höhere Flächenleistungsdichte, was wiederum zu einer höheren Wärmebelastung der Elektroden-Arrays führt. Während es in Helium und Neon möglich ist, Plasmen bei Atmosphärendruck mit einigen W/cm² zu erzeugen, werden in Stickstoff Leistungen benötigt, die nahezu an 1 W/mm² heranreichen. Die über eine längere Zeitdauer maximal realisierbaren Arbeitsdrücke in N₂ waren daher bei Abschluss der Experimente zu dieser Arbeit auf maximal 250 mbar (stabile, flächige Entladungen bis 130 mbar) begrenzt.

Die hohen Leistungsdichten ergeben sich daraus, dass bei der Skalierung der Entladungsparameter aus dem Niederdruckbereich auch der für nicht thermische Plasmen typische Ionisierungsgrad von 10⁻⁵ bis 10⁻⁶ (schwachionisierte Gase) konstant sein sollte. Daraus ergibt sich für Plasmen bei höheren Drücken bzw. bei Atmosphärendruck, dass sich mit ansteigender Gasdichte auch die Dichte der Ladungsträger proportional erhöht und somit auch die Stromdichte auf den Elektroden wächst. Bei Helium und Neon ist dies aufgrund ihrer besonderen Eigenschaften noch unkritisch, wie im vorangehenden Kapitel erläutert.

Wichtig auf dem Weg zu MSE-Plasmen in molekularen Gasen bzw. Gasgemischen bei Atmosphärendruck ist die Herstellung stabiler, optimierter Elektroden-Arrays, die auch einer durch höhere Leistungsdichten bedingten größeren Wärmeentwicklung standhalten können. Solche Systeme befinden sich gegenwärtig in einer ausführlichen Test- und Optimierungsphase. In Stickstoff konnten damit bereits Drücke bis 600 mbar realisiert werden. Dies entspricht in etwa dem 100fachen des Drucks, der im DC-Betrieb realisierbar ist, wobei zudem beim HF-Betrieb die Problematik der Entkopplung der Elektroden durch Vorwiderstände entfällt. Unabdingbar für den Betrieb bei hohen Drücken ist der Einsatz relativ breiter Elektroden (500–1500 μ m) mit großen, durch galvanische Abscheidung erzeugten Schichtdicken von 100 μ m und mehr. Aus letzterer Forderung könnten sich jedoch Schwierigkeiten fertigungstechnischer Art ergeben, da die Haftung der Elektrodensysteme auf dem Träger mit steigender Schichtdicke zunehmend schlechter wird.

Andererseits gilt es weiterhin durch ein geeignetes Design die Einkopplung der HF-Leistung zu optimieren, um die auftretenden Blindleistungen von vornherein zu minimieren. Eine andere relativ einfache und sehr schnell realisierbare Möglichkeit, die hohen thermischen Verluste abzuführen, ist der Einsatz einer Wasserkühlung. Darüber hinaus werden zur Zeit verstärkt Keramiksubstrate getestet, um der Problematik der Wärmeleitung bzw. Wärmeabfuhr zu begegnen. Eine Wasserkühlung erweist sich aber gerade bei Keramiksubstrate und der Haltevorrichtung auf ca. 120 °C, so dass die zwischen dem vorbeiströmenden Gas und dem Substrat auftretende Temperaturdifferenz relativ gering ist. Bei einer Wasserkühlung mit einer Kühlwassertemperatur von etwa 20 °C vergrößert sich diese Temperaturdifferenz auf mindestens 100 °C, was teilweise zur vorzeitigen Zerstörung der Elektroden-Arrays geführt hat. Dies bedeutet, dass mit ungekühlten Arrays unter sonst identischen Bedingungen durchweg höhere Betriebsdrücke erreicht werden konnten als mit gekühlten [SCHLEMM 99].

Im HF-Betrieb konnte neben den bereits im DC-Betrieb variierten Parametern Elektrodenabstand und Elektrodenbreite zusätzlich die Kantenform der Elektroden variiert werden. So wurden z. B. Elektrodensysteme mit Sägezahn-Geometrie und ähnlichem gefertigt. Diese strukturierten Elektroden erweisen sich als vorteilhaft bzgl. des Zündverhaltens, d. h., durch eine Mikrostrukturierung der Mikroelektroden wird die benötigte Zünd- bzw. Brennspannung und damit die benötigte HF-Flächenleistungsdichte herabgesetzt. Auch hier sind wieder lokale Feldüberhöhungen von entscheidender Bedeutung. Aufgrund des hochfrequenten Charakters des angelegten elektrischen Feldes mit einer Periodendauer von etwa 74 ns können sich im Unterschied zum DC-Betrieb jedoch keine Überschläge ausbilden, die zu einer Beschädigung der Arrays führen.

Die im Rahmen dieser Arbeit durchgeführten Experimente mit *pd*-skalierten MSE im HF-Betrieb bei 13,56 MHz haben gezeigt, dass die Erzeugung von nicht thermischen Plasmen bei vergleichsweise hohen Drücken bis hin zum Atmosphärendruck möglich ist. Damit kommen Teilchen- und Ladungsträgerdichten sowie andere Eigenschaften der Entladung in Bereiche, die sich um bis zu drei Größenordnungen von den aus dem Niederdruckbereich bekannten Parameterfeldern unterscheiden. Insbesondere werden bei höheren Drücken in molekularen Gasen sehr hohe HF-Leistungsdichten zur Erzeugung der Entladung benötigt, die eine hohe Strom- und damit Wärmebelastung der MSE hervorrufen und damit ggf. zur Zerstörung der Arrays führen. Für diesen thermischen Effekt gibt es zwei wesentliche Ursachen: Erstens, es treffen energiereiche Ionen aus der Plasmarandschicht auf die Elektroden auf und zweitens, die Ionenbewegung im Plasma überträgt durch Ionen-Molekül-Stöße große Mengen Energie auf das Gas und heizt es somit auf. Im Folgenden sollen daher einige Überlegungen zur durch das Hochfrequenzfeld induzierten Bewegung der Ionen im Plasma als Funktion der Frequenz und des Drucks angestellt werden.

Bei den meisten Plasmen, die bei höheren Drücken oder Atmosphärendruck erzeugt werden, handelt es sich in der Regel um thermische Plasmen, d. h., das Gas hat Temperaturen von einigen 1000 K und mehr. Für alle bekannten plasmatechnischen Anwendungen aus dem Niederdruckbereich sind diese thermischen Plasmen nicht brauchbar. Um Möglichkeiten der Erzeugung von Plasmen, die bei Atmosphärendruck die Eigenschaften von Niederdruckplasmen aufweisen, zu prüfen, sollen die bekannten Ähnlichkeitsbeziehungen aus dem Niederdruckbereich für die Skalierung des Druckübergangs von einigen Millibar auf 1000 mbar angewendet werden. Im Einzelnen sind dies:

$$pd = konstant$$
 (5.4)

Das heißt, die Anzahl der Stoßweglängen zwischen den Elektroden ist ungefähr gleich (*p* ist der Druck, *d* der Elektrodenabstand).

$$a = \text{konstant}$$
 (5.5)

Der Ionisierungsgrad a ändert sich nicht mit dem Druck.

$$E/p = konstant$$
 (5.6)

Die reduzierte Feldstärke (*E* = Feldstärke), d. h. die Brennspannung des Plasmas ist druckunabhängig.

Für Hochfrequenzentladungen im Druckbereich von wenigen Millibar ist gut bekannt, wie sich lonen und Elektronen im HF-Feld verhalten, d. h. bis zu welchen Frequenzen sie in ihrer Bewegung dem periodisch wechselnden Feld noch folgen können. Es können drei Fälle unterschieden werden:

 DC- und Niederfrequenzplasma (< 100 kHz) Elektronen und Ionen gelangen in einer Halbwelle von einer Elektrode bis zur anderen. Auf der Kathodenseite bildet sich der Kathodenfall aus. Die Leistungsbelastung der Elektroden ist hoch. 2.) Hochfrequenzplasma (5–50 MHz)

Die Ionen stehen aufgrund ihrer hohen Masse und der damit verbundenen Trägheit praktisch auf der Stelle, nur die Elektronen können noch dem schnellen Richtungswechsel des elektrischen Feldes folgen. Dadurch bauen sich die Plasmarandschichten an den Elektroden auf, die elektrische Leistungsbelastung der Elektroden ist mittel.

3.) Mikrowellenplasma (1–20 GHz) In diesem Frequenzbereich können auch die Elektronen dem Richtungswechsel des Feldes nicht mehr folgen und stehen praktisch auf der Stelle, wodurch nur noch eine geringe Leistungsbelastung der Elektroden entsteht.

Demnach sollten zur Erzeugung von Atmosphärendruckplasmen aufgrund der hohen benötigten Leistungsdichte möglichst hohe Frequenzen eingesetzt werden. Abbildung 5-33 zeigt die Ionenschwingungsweite in einem Plasma in Abhängigkeit vom Druck für drei Frequenzen (HF-Bereich: 13,56 MHz, VHF-Bereich: 144 MHz, Mikrowellen: 2,45 GHz). Dabei können zwei prinzipielle Fälle unterschieden werden.

Bei niedrigen Frequenzen ($\omega \rightarrow 0$) wird die Schwingungsamplitude groß und ist nahezu druckunabhängig. Bei sehr hohen Frequenzen ($\omega \rightarrow \infty$) ist die sehr kleine Schwingungsamplitude druckabhängig.

Mit den weiter oben genannten typischen Werten ($\eta = 0.5$ für etwa gleich schwere Teilchen, $(E/p)_0 = 100 \text{ V/mbar} \cdot \text{cm}$ aus dem Niederdruckplasma, W = 30 eV und $p\lambda \approx 100 \text{ }\mu\text{m} \cdot \text{mbar}$) erhält man also für Stickstoff, dass die Ionen bei Atmosphärendruck und einer Frequenz von 13,56 MHz etwa 6 μm um ihre Nulllage schwingen. Eine typische Plasmarandschicht ist ca.

Abbildung 5-33. Schwingungsamplitude der Ionen in einem Stickstoffplasma bei mittleren Parametern (s. Text) in Abhängigkeit vom Druck bei drei unterschiedlichen Frequenzen.

10 mittlere freie Weglängen λ dick, das entspricht bei 1000 mbar etwa 1 µm, d. h. die Randschicht kann sich nicht nach den aus dem Niederdruckbereich bekannten Mechanismen ausbilden, sondern sie wird von den Ionen durchstoßen. Bei einer Frequenz von 1 MHz bewegen sich die Ionen bei Atmosphärendruck sogar um etwa 100 µm um ihre Nulllage, so dass bei solchen Elektrodenabständen die Ionen während einer Halbwelle von einer Elektrode zur anderen gelangen können. Demnach muss die Schwingungsweite kleiner oder gleich der Dicke der Randschicht sein, damit der bekannte Ausbildungsmechanismus stattfinden kann. Unter der Annahme, dass die Plasmarandschicht typischerweise 10 mittleren freien Weglängen entspricht erhält man, dass bei 1000 mbar eine Schwingungsamplitude von $10 \cdot \lambda = 1$ µm erst bei einer Frequenz von 80 MHz erreicht wird. Amplituden, die einer freien Weglänge von 0,1 µm entsprechen, werden schließlich bei 800 MHz erreicht. Für einen mittleren Wert von etwa $3 \cdot \lambda = 0,3$ µm ergeben sich Frequenzen um 250 MHz.

Aus dem bisher Gesagten kann zusammengefasst werden, dass Hochfrequenzplasmen dann bei Atmosphärendruck erzeugt werden können, wenn die Bewegung der Ladungsträger vergleichbar mit der Ladungsträgerbewegung im Millibarbereich ist. Dies ist bei hohen Frequenzen der Fall. Entsprechend kann die notwendige "Mindestfrequenz" zur Erzeugung von HF-Plasmen in Abhängigkeit vom Druck abgeschätzt werden. Für eine genauere Betrachtung wäre es jedoch notwendig, die Stoßvorgänge im Plasma konkreter zu erfassen. Letztendlich würde eine strenge Gültigkeit des bisher Gesagten aber bedeuten, dass ähnliche Plasmaeigenschaften wie im Niederdruckbereich bei Atmosphärendruck erst bei hohen Frequenzen im VHF-Bereich von 100 MHz bis 250 MHz zu erwarten sind.

Abschließend sollen im Folgenden kurz die charakteristischen Eigenschaften bzw. Betriebsparameter der mit Hochfrequenz betriebenen MSE-Entladungen denen von Barrieren-

Abbildung 5-34. Schwingungsamplitude der Ionen in einem Stickstoffplasma bei 1000 mbar bei mittleren Parametern (s. Text) in Abhängigkeit von der Frequenz. – λ = mittlere freie Weglänge (ca. 0,1 µm bei 1000 mbar).

entladungen gegenübergestellt werden. Barrierenentladungen werden seit etwa 20 Jahren intensiv erforscht und haben sich als eine der zur Zeit bedeutendsten Methoden zur Erzeugung von nicht thermischen Plasmen bei Atmosphärendruck mittlerweile in einigen Bereichen der industriellen Anwendung etabliert.

Während bei Barrierenentladungen die Betriebsfrequenz bei den meisten technischen Anwendungen zwischen 500 Hz und 500 kHz liegt, werden MSE-Entladungen vorzugsweise mit einer hochfrequenten Wechselspannung von 13,56 MHz betrieben. In Edelgasen beträgt die typischerweise benötigte HF-Leistungsdichte nur etwa 3–6 W/cm², um eine Entladung mit MSE bei Atmosphärendruck zu erzeugen. Bei Brennspannungen von einigen 100 V für eine MSE-Entladung ergeben sich somit Stromdichten im Bereich von einigen 10 mA/cm² bis zu wenigen 100 mA/cm². Über die eingespeiste HF-Leistung ist die Entladung in diesem Bereich individuell fein steuerbar, so dass plasmachemische Prozesse induziert bzw. unterdrückt werden können. Durch die hohe Betriebsfrequenz werden Ladungsträgerverluste über das Elektrodensystem minimiert: Die Ionen oszillieren mit nur geringen Amplituden (s. 0.).

Im Vergleich zu Barrierenentladungen zeichnen sich die neuartig erzeugten MSE-Entladungen durch ihre homogene, d. h. nicht filamentierte Erscheinungsform aus, die mit der von Niederdruck-Glimmentladungen vergleichbar ist. Damit unterscheidet sich die MSE-Entladung deutlich von der Barrierenentladung, welche sich aus einer Vielzahl von voneinander unabhängigen Stromfilamenten bzw. Mikroentladungen zusammensetzt, die zeitlich und räumlich zufällig verteilt auftreten (Dauer etwa 1–100 ns). Der Radius der Filamente lässt sich mit etwa 0,1 mm angeben, wobei Stromspitzen von 0,1 A gemessen werden. Damit werden in diesen Mikroentladungen Stromdichten von 100–1000 A/cm² erreicht, die somit um einen Faktor 10⁴ über den bei den MSE-Plasmen auftretenden Werten liegen.

Neben den um Größenordnungen verschiedenen elektrischen Betriebsparametern unterscheiden sich Anordnungen zur Erzeugung von Barrierenentladungen von MSE auch konstruktiv. Entsprechend der Namensgebung ist das Charakteristische der Barrierenentladung mindestens eine isolierende dielektrische Schicht zwischen den Metallelektroden. Aufgrund des Dielektrikums *muss* hier mit Wechselspannung gearbeitet werden und daraus ergibt sich auch, dass es sich bei der Barrierenentladung um eine transiente, selbstpulsende Entladungsform handelt.

Wie in dieser Arbeit gezeigt werden konnte, ist es dagegen möglich, MSE im unbeschichteten Zustand sowohl mit hochfrequenter Wechselspannung als auch mit Gleichspannung zu betreiben, wobei letzteres zur Zeit allerdings, wie in Kapitel 5.1 dargelegt, noch nicht bei Atmosphärendruck möglich ist. Sehr vielversprechend ist in dieser Richtung der Einsatz von gepulster Gleichspannung, was jedoch noch intensive Forschungsarbeit erfordert. Ist es beispielsweise aus Gründen der chemischen Beständigkeit, d. h. zur Erreichung verlängerter Standzeiten notwendig, die MSE mit einer dielektrischen Schutzschicht zu versehen, so kann dies für den HF-Betrieb optional realisiert werden. Als Materialien kommen dabei Gläser, Quarz oder Keramiken in Frage, wobei diese Schichten jedoch nur in Stärken von einigen 10 nm eingesetzt werden. Bei Barrierenentladungen weist das Dielektrikum dagegen eine Stärke von 0,5 mm bis zu einigen Millimetern auf und ist für die Art der Entladung charakteristisch bzw. unabdingbar. Die Aufbringung einer Schutzschicht auf MSE hat nach bisherigen Erkenntnissen keinen Einfluss auf die Charakteristik der erzeugten Entladungen, insbesondere führt dies nicht zu einer signifikanten Erhöhung der Brenn- und Zündspannungen, was sonst den Vorteil des geringen Elektrodenabstandes relativieren würde.

5.5 Anwendungspotenzial von MSE

Die auf nicht thermischen Plasmen basierende Plasmatechnik stellt bereits heute aufgrund ihres breiten Anwendungspotenzials (z. B. Energie-, Medizin-, Textil- und Umwelttechnik, Maschinenbau, Halbleiter-, Optik- und Automobilindustrie) eine Schlüsseltechnologie dar, deren Bedeutung indessen in Zukunft noch weiter wachsen wird. Es lassen sich die folgenden Anforderungen an moderne Plasmatechnologien formulieren:

- Die Erzeugung von plasmaphysikalischen und plasmachemischen Zuständen weitab vom thermischen Gleichgewicht mit einer hohen Produktivität, d. h., Erzielung einer hohen plasmachemischen Reaktivität durch die Erzeugung von Plasmen mit möglichst hohen Ladungsträgerdichten.
- Einfache Prozessintegration, d. h., industrielle Plasmen sind vorzugsweise bei Atmosphärendruck zu betreiben, um eine gute Kompatibilität und Integration zu anderen Prozessschritten zu erreichen.
- Umsetzung der Prozesse im großen industriellen Maßstab für die Massenproduktion bei beherrschbaren Kosten, d. h., Vermeidung der enormen Investitionskosten großindustrieller Vakuumanlagen beim Einsatz von atmosphärentauglicher Plasmatechnik.

Im Rahmen dieser Arbeit wurde ein neuartiges, auf Mikrostrukturierten Elektrodensystemen basierendes Verfahren zur Erzeugung von homogenen und flächigen Plasmen innerhalb eines weiten Druckbereichs, insbesondere aber bei Atmosphärendruck, erforscht. Zum Betrieb der Plasmen sind keine aufwändigen Vakuumbedingungen sowie keine aufwändigen Hochspannungstechnologien erforderlich. Aufgrund des geringen Elektrodenabstandes können bereits mit vergleichsweise moderaten Spannungen von einigen 100 V elektrische Gasentladungen auch im atmosphärennahen Druckbereich erzeugt werden. Damit konnte gezeigt werden, dass, wenn die Eigenschaften der im Millibarbereich arbeitenden, gut bekannten elektrischen Gasentladungen auf Atmosphärendruck hochskaliert werden, Niedertemperaturplasmen hoher Leistungsfähigkeit entstehen, die neben den bekannten Möglichkeiten der Erzeugung in Form von Korona- oder Barrierenentladungen eine neue Form atmosphärischer Plasmen darstellen. Die vorgenommene Skalierung zeigt, dass für einen Betrieb bei Atmosphärendruck Elektrodenabstände im Bereich von 100-500 um benötigt werden, welche mit Hilfe moderner mikrotechnischer Verfahren relativ unkompliziert hergestellt werden können. Nach einer kurzen Forschungsdauer von nur etwa 4 Jahren erfüllen die neuartigen MSE-Plasmen somit im Wesentlichen bereits heute die oben genannten Anforderungen an moderne Plasmatechnologien. Insgesamt macht all dies MSE zu einem Schlüssel für einen unkomplizierten Einsatz der Plasmatechnologie in einer breiten Spanne von Anwendungsmöglichkeiten, wie z. B. Oberflächentechnologie, Lichterzeugung, plasmachemische Synthese oder Abgasnachbehandlung. Diese potenziellen Anwendungsgebiete sollen nachfolgend näher diskutiert werden.

Oberflächentechnologie

Mit MSE können homogene Plasmen mit einer großen Flächenausdehnung erzeugt werden. Damit sind sie zunächst für die plasmatechnische Behandlung von Oberflächen (Modifikation, Reinigung, Aktivierung, Beschichtung) prädestiniert. Die Behandlung von Oberflächen

Abbildung 5-35. MEA in Mehrfachanordnung. – Foto: Roth & Rau Oberflächentechnik GmbH,

mit plasmatechnischen Verfahren ist heute und in der Zukunft, z. B. bei der Herstellung elektronischer Schaltkreise oder photovoltaischer Bauelemente, von massiver Bedeutung. Ein Werkstück kann sehr nah an das dünne MSE-Flächenplasma herangebracht werden. Darüber hinaus ist es denkbar, später durch eine nicht planare Gestaltung der MSE eine individuelle Anpassung an Werkstücke zu realisieren. Wenn Plasmen größerer Abmessungen für zukünftige industrielle Anwendungen erzeugt werden sollen, können Mehrfachanordnungen eingesetzt werden, wie sie teilweise bereits in einem gemeinsamen Forschungsprojekt mit Industriepartnern realisiert wurden (Abb. 5-35).

Die Oberflächenbehandlung ist aber nicht nur aufgrund des MSE-Designs ein interessantes Anwendungsgebiet. Im Allgemeinen werden dort genau solche Gasgemische eingesetzt, in denen bereits heute großflächige MSE-Entladungen routinemäßig erzeugt und stabil über einen langen Zeitraum betrieben werden können. Leistungsdichten von nur etwa 10 W/cm² reichen aus, um in Helium unter Zumischung von reaktiven molekularen Gasen, wie z. B. CH₄ oder C₂H₂ mit Anteilen zwischen 2 Vol.% und 10 Vol.%, ein Plasma *bis zu* 1000 mbar zu erzeugen, dass zur Abscheidung von Schichten genutzt werden kann (prinzipiell ist das auch in Neon möglich, was aber einen höheren Kostenaufwand bedeutet). Da atmosphärische Plasmen gegenüber konventionellen Niederdruckplasmen über eine um mehrere Größenordnungen höhere Ladungsträgerdichte verfügen, ist eine entsprechend hohe Schichtabscheiderate zu erwarten. Andererseits sind Schichthärten, wie sie mit Entladungen bei Niederdruck erzeugt werden können, bei Drücken oberhalb 100 mbar kaum zu erwarten, da die freie Weglänge mit zunehmenden Druck abnimmt und somit die auf die Oberfläche auftreffenden Spezies aufgrund der erhöhten Stoßhäufigkeit eine geringere kinetische Energie aufweisen.

Möglicherweise können die höheren Drücke im Sinne der plasmachemischen Synthese von neuartigen Feststoffen genutzt werden, während für die Erzeugung harter Schichten eher der Druckbereich von 10 mbar bis 100 mbar untersucht werden sollte (im Vergleich zu den heute üblicherweise zur Schichtabscheidung eingesetzten Betriebsdrücken im Bereich von einigen Zehnteln Millibar und weniger ist hier dennoch von einem "Hochdruckverfahren" zu sprechen), in dem auch DC-MSE-Plasmen mit einem vergleichsweise geringeren Aufwand erzeugt werden können. Darin zeigt sich der Vorteil der MSE, dass die Erzeugung von Entladungen über einen Druckbereich möglich ist, der sich über drei Größenordnungen erstreckt, so dass entsprechend der bestehenden Anforderungen jeweils eine Lösung gefunden werden kann.

Neben der Schichtabscheidung sind außerdem beispielsweise die Oberflächenmodifizierung von Polymeren (1–10 % H_2 oder H_2O in Helium) oder das Plasmaätzen von Silizium (1–10 % CF_4 in Helium) mögliche Anwendungen, die in der Zwischenzeit bereits auch näher in Zusammenarbeit mit industriellen Projektpartnern untersucht worden sind [INFOPHYSTECH 01].

Abgasnachbehandlung

Aufgrund ihres Designs bzw. aufgrund des großen Oberflächen- zu Volumenverhältnis der Entladung scheinen MSE für Volumenprozesse, wie sie die Abgasnachbehandlung gemeinhin darstellt, auf den ersten Blick weniger geeignet zu sein. Hier bestehen jedoch Möglichkeiten, durch zweckmäßige Anordnungen der MSE einen definierten Strom des zu behandelnden Abgases durch das Plasma zu realisieren. So würde sich z. B. eine Anordnung von mehreren MSE hintereinander (ähnlich wie eine Reihe von Dominosteinen) anbieten, wobei dann gegebenenfalls beide Seiten des Substrats mit einer Elektrodenstruktur versehen sein könnten. Somit entstehen Kanäle, in denen sich das Plasma ausbildet und durch die das Gas geleitet werden kann. Hier wäre dann zu untersuchen, inwieweit sich die gegenüberliegenden Systeme positiv bzw. negativ beeinflussen. Diese Überlegungen sollen nur beispielhaft verdeutlichen, dass MSE durchaus auch für Volumenprozesse geeignet sein könnten.

Zur Evaluierung des Anwendungspotenzials der MSE für eine nicht thermische plasmatechnische Abgasnachbehandlung standen aber in dieser Arbeit zunächst einmal verschiedene grundlegende Messreihen zum Abbau von Stickoxiden (NO_x) als Modellsubstanzen im Vordergrund, die erste Orientierungspunkte auf diesem Gebiet liefern sollten. Da die plasmatechnische Nachbehandlung von Abgasen in der Regel bei Atmosphärendruck durchgeführt wird, ist es sinnvoll im Rahmen solcher Untersuchungen auch die MSE bei zumindest atmosphärennahen Drücken zu betreiben. In dieser Arbeit war dies jedoch mit den zur Verfügung stehenden MSE nur in Helium (oder Neon) möglich, während häufig Stickstoff das Gas mit dem höchsten Anteil (70–80 Vol.%) im Abgasstrom ist. Sobald optimierte MSE gefertigt sind, die einen Betrieb bei hohen Drücken (ab etwa 750 mbar) zulassen, muss es daher das Ziel sein, in zukünftigen Forschungsarbeiten Untersuchungen zum Abbau von Schadstoffen in Stickstoff durchzuführen.

Zunächst ist also der Abbau von NO_x in Heliumentladungen untersucht worden. Hierzu wurden Gasentladungen bei Atmosphärendruck mit Hochfrequenz (13,56 MHz) angeregt und die relevanten Spezies mit Hilfe der Quadrupolmassenspektrometrie online detektiert. In Abhängigkeit von der eingekoppelten HF-Leistung sind verschiedene Geometrien hinsichtlich der Effektivität des NO_x-Abbaus vermessen worden, wobei Abbauraten von bis zu 65 % für NO und bis zu 40 % für NO₂ bei einer Leistungsdichte von etwa 5 W/cm² erzielt werden konnten. Die Abbauprodukte von NO_x im Heliumplasma sind erwartungsgemäß N₂ und O₂, während eine Bildung höherer Stickoxide, wie z. B. NO₃, N₂O₃ oder N₂O₅, nicht zu beobachten war.

Das wesentliche Ergebnis der Untersuchung zum NO_x-Stoffumsatz ist, dass, abhängig von der Gaszusammensetzung, vor allem aber in Abhängigkeit von der elektrischen Leistung und der Durchflussrate, der Abbau von NO_x gezielt beeinflusst und somit andersherum durch Anpassung der Leistung an die jeweilige Gaszusammensetzung ein konstanter NO_x-Abbau erzielt werden kann. Diese Steuerungsmöglichkeiten machen MSE für die Anwendung in der Abgasnachbehandlung somit außerordentlich interessant. Aussagen darüber, welche plasmachemischen Prozesse unter praxisnäheren Abgasbedingungen, d. h. in N₂-Entladungen ablaufen werden, sind derzeit nur schwer möglich, da dieses das Ziel

zukünftiger Forschungsarbeiten ist. Aufgrund der in Kapitel 5.4 geschilderten, deutlich unterschiedlichen elektrischen sowie geometrischen Parameter der MSE im Vergleich zu beispielsweise Barrierenanordnungen ist jedoch nicht völlig auszuschließen, dass in MSE-Entladungen auch eine veränderte Plasmachemie abläuft, was aber zunächst einer intensiven Untersuchung bedarf.

Die erreichten NO_x-Abbauraten können zukünftig noch optimiert werden, da im eingesetzten Experimentalreaktor noch keine bestmögliche Führung des Gasstromes durch das Plasma realisiert war und somit ein zu großes Totvolumen vorherrschte, was auch die Energiebilanz zeigt. Eine überschlägige Berechnung des Energieaufwandes für den Abbau eines NO-Moleküls ergibt einen aus Anwendungssicht indiskutablen Wert: Unter Standardbedingungen (25 °C, 1013 mbar) enthält ein mit einem idealen Gas gefülltes Volumen V von 1 m³ ca. 2,5 · 10²⁵ Atome bzw. Moleküle. Eine NO-Konzentration von 500 Vol.ppm, wie sie in dieser Arbeit verwendet wurde, entspricht dann 1,25 · 10²² NO-Molekülen/m³. Bei einem typischen Gasdurchfluss von 72.5 sccm sind das 9.1 · 10¹⁷ NO-Moleküle in der Minute, die durch den Reaktor gelangen. Wenn davon typischerweise 65 % abgebaut werden, entspricht das einem Abbau von 5,92 · 10¹⁷ NO-Molekülen/min. Bei einer HF-Leistung von 30 W, die an einem Array anliegt, entspricht das einem Energieaufwand von 1,1 · 10²² eV/min, woraus sich ein Wert von 18600 eV pro umgewandelten NO-Molekül ergibt, der für eine wirtschaftliche Anwendung unannehmbar ist, was hier jedoch in erster Linie auf die nicht optimierte Führung des Gasstromes durch das Plasma zurückzuführen ist und weniger auf eine ineffiziente Energieumsetzung im Plasma.

Für Anwendungen im Kraftfahrzeugsektor gelten beispielsweise aufzuwendende Energien von 10 eV bis 25 eV pro NO-Molekül, entsprechend einem Mehrverbrauch von maximal 3– 5 %, als gerade noch akzeptabel. Mit den klassischen Entladungsformen (Korona- und Barrierenentladung) werden diese Vorgaben nur vereinzelt erreicht. Ein Beispiel hierfür ist PUCHKAREV, der für einen NO-Abbau von 50 % in einem realen Dieselabgas mit einer gepulsten Koronaentladung einen Wert von 10–20 eV angibt; dies ist jedoch nur bei geringen NO-Konzentrationen von 100 ppm möglich [PUCHKAREV 97]. KLEIN gibt für die Zersetzung von NO in einer Barrierenentladung einen Wert von etwa 80 eV pro Molekül an [KLEIN 95].

Plasmachemische Synthese

Für die nicht thermische plasmachemische Synthese unter Einsatz von MSE erscheinen unter prinzipiellen Gesichtspunkten insbesondere solche Prozesse als vielversprechend, die in konventionellen Verfahren sehr hohe Temperaturen benötigen. Im Rahmen grundlegender Voruntersuchungen zu dieser Arbeit wurden bereits einige Tests hinsichtlich der Anwendung von MSE auf diesem Gebiet durchgeführt. Dabei konnte erfolgreich demonstriert werden, dass prinzipiell eine Synthese von z. B. höheren Kohlenwasserstoffen wie Ethylen $(H_2C = CH_2)$ und Acetylen (HC = CH) aus Methan (CH₄) möglich ist [ROTH 97]. Die mit einem nicht optimierten System erzielte Ausbeute für Acetylen (bis zu 20 %), welches z. B. zur Herstellung von 1,4-Butandiol (Zwischenprodukt für Polyurethane) benötigt wird, war dabei sogar annähernd so hoch, wie sie gegenwärtig in traditionellen Plasmaprozessen (Lichtbogenverfahren, Temperaturen um 1500 °C) erreicht werden können. Eine andere interessante Reaktion ist die plasmachemische Bildung von Formaldehyd (HCHO), welches ein wichtiges Zwischenprodukt der industriellen organischen Chemie darstellt, aus Kohlendioxid (CO₂) und Wasserstoff (H₂).

Die genannten Reaktionen stellen herausragende Beispiele aus einer Vielzahl von denkbaren plasmachemischen Synthesen dar. Zur Zeit sind MSE bis auf die genannten

Voruntersuchungen in keiner Weise hinsichtlich eines potenziellen Einsatzes auf diesem Gebiet charakterisiert, so dass hier ein großer Forschungsbedarf besteht. Neben der Selektivität der Prozesse ist in diesem Zusammenhang – wie bei allen plasmachemischen Umsetzungen – vor allem die Effektivität, d. h. die Energiebilanz von Interesse. In Bezug auf die Selektivität sind beim Einsatz der MSE große Vorteile zu sehen, da über die elektrischen Parameter Steuerungsmöglichkeiten bestehen, die eine individuell anpassbare Prozessführung erlauben. Aussagen zur Effektivität der Prozesse wären zur Zeit eher spekulativ, so dass hiermit bis zum Vorliegen von substantiellen Forschungsergebnissen gewartet werden sollte.

Lichterzeugung

Eine mögliche Anwendung aus dem Bereich der Lichterzeugung ist im Bau von großflächigen MSE-Spektrallampen zu sehen, d. h. die Erzeugung von Licht mit einer charakteristischen spektralen Verteilung. Für diese Anwendung bietet sich der DC-Betrieb an, da nicht notwendigerweise hohe Drücke benötigt werden. Anhand der intensiven Emission der in Wasserdampfentladungen erzeugten OH-Radikale wurde die Temperatur der angeregten Spezies im Plasma bestimmt [GEßNER 98]. Aus Anwendersicht wäre somit beispielsweise an im Niederdruckbereich betriebene OH-Spektrallampen zu denken. Andererseits wären Spektrallampen auch bei höheren Drücken unter Beachtung des Strahlprofils realisierbar, wenn man an die untersuchten Entladungen in den Helium/NO-Gasgemischen denkt, welche die γ -Banden des Stickstoffmonoxids mit hoher Intensität emittieren. Um hier Effizienzen und konkrete Einsatzmöglichkeiten zu erforschen, wäre eine quantitative UV-Lichtbestimmung von Bedeutung.

6. Beschichtungsprozesse

Eine breite Nomenklatur mit Begriffen wie *thin film deposition, glow discharge deposition, plasma deposition,* etc. beschreibt einen Prozeß bei dem niederschlagbare Radikale in einem Nicht - Gleichgewichtsplasma von Precursor Gasen gebildet werden. Neuere Veröffentlichungen benutzen Begriffe wie *plasma -assisted* oder *plasma - enhanced chemical vapor deposition (PECVD)* [GRILL, MORT 86]. Für die Filmabscheidung aus organischen Precursor - Gasen sind Termini wie *glow discharge polymerization* und *plasma polymerization* gebräuchlich. Die unterschiedlichsten anorganischen und organischen Materialien lassen sich in solchen Plasmaprozessen abscheiden, darunter Diamant, amorphe Kohlenstoffschichten (DLC - diamond like carbon, a - C:H) [MORT 86, GIELEN 96], amorphe Siliciumschichten (a-Si:H), Siliciumdioxid -, Siliciumnitrid - und Siliciumcarbid - Schichten. Tabelle 6-1 gibt einen Überblick über die gebräuchlichsten Prozesse. Typische Betriebsdrücke liegen bei 0,1 - 10 Torr. Das Substrat wird häufig auf eine Temperatur um 200 - 500°C gebracht. Zum Einsatz kommen die unterschiedlichsten Plasmareaktoren im HF -, DC - oder Mikrowellenbetrieb.

Film	Betriebsdruck	Substrattemperatur	Precursor Gas
Diamant	≤ 760 Torr	850 - 950°C	CH_4 , $C_xH_y + H_2$
a-C:H, DLC	0,006 - 7,5 Torr	RT - 250°C	CH_4 , C_2H_2 , C_2H_4 , C_2H_6 etc.
a-Si:H	0,1 -10 Torr	≤ 200°C	SiH ₄
a-Si _x N _v :H	0,2 - 2 Torr	100 - 60°C	SiH ₄ + NH ₃
SiO ₂		200 - 400°C	$SiH_4 + N_2O (+O_2)$
a-Si _x C _v :H		25 - 600°C	$SiH_4+CH_4,SiH_4+C_2H_2,$
-			Si(CH ₃) ₄

Tabelle 6-1:	Typische	Beschichtungsprozesse
--------------	----------	-----------------------

Diamant - Filme sind aufgrund ihrer außergewöhnlichen Härte, einer thermischen Leitfähigkeit, die diejenige von Kupfer noch um das zehnfache übersteigt, ihrer Halbleitereigenschaften und chemischen Beständigkeit wegen gefragte Materialien. Im Gegensatz zu klassischen Diamant - Darstellungsverfahren bei hohen Drücken von einigen hundert kbar und Temperaturen bis zu 3500°C bieten PECVD - Verfahren die Möglichkeit Diamant - Schichten bei Atmosphärendruck und moderateren Temperaturen < 950°C darzustellen. Eine weitere Kohlenstoff - Form wurde erstmals 1971 von Aisenberg und Chabot erwähnt [AISENBERG 71] Dabei handelte es sich um eine amorphe wasserstoffhaltige (a-C:H) Kohlenstoffschicht. Die Eigenschaften dieser (a -C:H) - Schichten hängen stark von den jeweiligen Bedingungen während des Beschichtungsvorganges ab und reichen von weichen polymerartigen Filmen bis zu harten diamantähnlichen Schichten. Neben der großen Härte von 1000 - 3000 kg/mm² sind die Filme chemisch inert, elektrisch isolierend (bis zu 10¹⁶ Ω /cm), mechanisch stabil und schließlich durchlässig für Licht im infrarroten und sichtbaren Bereich. Dies macht sie zu interessanten Schutz - bzw. Antireflex - Beschichtungen beispielsweise für optische Bauteile.

In den (a-C:H) - Schichten liegen sowohl sp³ hybridisierte C - Atome, als auch sp² hybridisierte C - Atome vor. Die sp³ Hybridisierung ist im Wesentlichen für die mechanischen Eigenschaften der Filme, wie Härte und Elastizität verantwortlich, während die optischen und elektronischen Eigenschaften wie Durchlässigkeit und elektrische Leitfähigkeit von den sp² gebundenen C - Atomen bestimmt werden. So können die Eigenschaften von (a-C:H) - Schichten häufig als Funktion des sp³ / sp² - Verhältnisses beschrieben werden.

Zur Abscheidung der Schichten werden vielfach kapazitiv RF betriebene Reaktoren eingesetzt, bei denen die beiden Elektroden in einem definierten Abstand parallel zueinander stehen. Das zu beschichtende Werkstück oder Substrat ist auf der RF -Elektrode plaziert, da diese sich mit einem negativen dc self - bias Potential auflädt, wenn die RF - Elektrode klein ist gemessen am geerdeten System. Die Bias -Spannung entsteht durch den erheblichen

Unterschied in den Beweglichkeiten von Ionen und Elektronen im Radiofrequenzfeld. Abb. 6-1 zeigt die entsprechenden Spannungsabfälle an den beiden Elektroden.

Abb. 6-1: Zeitlich gemittelter Spannungsverlauf in einer HF – Entladung [MORT 86].

Somit werden die im Plasma gebildeten positiven Ionen C_2^+ , C^{2+} , CH^+ , CH_2^+ , CH_3^+ etc. auf das Substrat beschleunigt. Als Reaktionsgase dienen Kohlenwasserstoffe, zum Teil verdünnt in einem Trägergasstrom. Bekannt sind beispielsweise Prozesse mit Methan, Ethan, Propan, Butan, Acetylen, Ethylen, Propylen oder Cyclohexan als Kohlenstofflieferanten. Typische Betriebsdrücke liegen zwischen 10 und 100 mTorr bei einer Radiofrequenzleistung bei 13,56 MHz von ca. 1 W/cm². Die Abscheiderate hängt bei gleichbleibender Leistung vom Beschichtungsgas ab.

Bei Alkanen C_mH_{2m+2} steigt die Abscheiderate von Methan bis Butan linear mit zunehmendem m an [ANDERSON 79]. Typische Abscheideraten liegen zwischen 0,5 µm / h (Methan) und 10 µm / h (Benzol). Typische Filmdicken von (a-C:H) - Schichten betragen 1,5 nm. Die Filmdicke läßt sich über die Beschichtungsdauer regulieren.

6.1 C - Schichten in MSE - Plasmen

Im Rahmen dieser Arbeit wurden erste Untersuchungen zur Schichtabscheidung mittels MSE durchgeführt. Dabei wird deutlich, daß MSE - Strukturen ein großes Potential für die Beschichtung verschiedenster Substrate bei vergleichsweise hohen Drücken aufweisen. Es werden im Vergleich mit den traditionellen Niederdruckverfahren hohe Abscheideraten von 1-10 µm / min erreicht, mit Filmdicken von bis zu 15 µm und Härten um 9000 MPa [INFOPHYSTECH 01, GEBNER 01]. Neben der Beschichtung einfacher planarer Substrate ermöglichen MSE auch die Bearbeitung von unebenen oder schwer zugänglichen Werkstücken, da sie auf flexiblen Substraten aufgebracht an jedes Werkstück individuell angepaßt werden können. Die Untersuchungen konzentrierten sich auf die Abscheidung von (a-C:H) - Schichten auf Silicium -, Glas - und Metall - Substraten in MSE - Plasmen aus Gasmischungen von Methan bzw. Acetylen in Helium. Als Versuchsaufbau wurde eine planparallele Anordnung von MSE und Substrat gewählt, wie in Abb. 6.1-1 dargestellt. Die Abbildung veranschaulicht ein mit Radiofrequenzen bei 13,56 MHz betriebenes MSE -System, dem in einem definierten Abstand von 7 - 9 mm ein Substrat gegenübergestellt ist. Das Substrat lag auf einer Metallplatte auf, die mit einer rechteckförmigen Wechselspannung von 550 Vpp bei einer Frequenz von 9,55 kHz versehen werden konnte.

Die Gaszu - und Ableitung erfolgte durch zwei Glasfilterplatten, welche eine Kontamination des Testreaktors mit unerwünschten Beschichtungsprodukten verhinderten. Die Apparatur wurde mit einem konstanten Gasfluß um 100 sccm betrieben. Zur Spannungsversorgung der MSE diente ein Radiofrequenzgenerator mit einer Betriebsfrequenz von 13,56 MHz. Zur Spannungsversorgung des Substrates wurde das Ausgangssignal eines Funktionsgenerators (DS345 Stanford Research Systems) von 30 mV bei 9,55 kHz mit Hilfe eines

Verstärkers (Eigenbau in der Elektronikwerkstatt des Hauses) und einer Zündspule (Fa. Bosch) auf eine Spannung von 550 Vpp verstärkt. Die Tabellen 6.1-1 und 6.1-2 fassen die verschiedenen durchgeführten Beschichtungsexperimente zusammen. Es kamen zwei unterschiedliche Beschichtungsgase zum Einsatz. Zum einen eine Gasmischung aus 5 Vol.% Methan im Trägergas Helium, zum anderen ein Gemisch aus 2 Vol.% Acetylen, ebenfalls im Trägergas Helium. Über ein Gasmischsystem konnten zu diesen beiden Gasgemischen weitere Komponenten zugegeben werden. So wurde beispielsweise zu der Acetylen / Helium Mischung zusätzlich Wasserstoff hinzudosiert. Der Gasfluß während der Beschichtungsexperimente betrug 100 sccm, der Druck wurde zwischen 10 mbar und 400 mbar variiert. Es zeigte sich aber, daß haftende Schichten mit Härten in einem Bereich von 600 MPa bis 9000 MPa nur in einem Druckbereich bis etwa 100 mbar abgeschieden werden konnten. Bei höheren Drücken um 400 mbar bildete sich anstelle einer zusammenhängenden haftenden Schicht ein gelber, pulverförmiger, nicht haftender Niederschlag. Diverse zu beschichtende Substrate kamen zum Einsatz, darunter Silicium, Glas, Aluminium und Kupfer. Die Abmessungen der Substrate betrugen jeweils 1,5 x 2,5 cm². Vor jedem Beschichtungsprozeß wurde das jeweilige Substrat mit Aceton gereinigt, um eine bessere Haftung der abzuscheidenden Schicht zu gewährleisten.

Abb. 6.1-2 zeigt beispielhaft eine aus einer Mischung von 2 Vol.% Acetylen in Helium bei ca. 10 mbar abgeschiedene C - Schicht.

Abb. 6.1-2: C - Schicht, abgeschieden aus einer Gasmischung von 2 Vol. % Acetylen in Helium bei einem Betriebsdruck von 10 mbar.

Härte / MPa	Substrat	Druck / mbar	Dauer / min	Fluß /sccm	Substrat bias (9,55 kHz) / Vpp	Abstand / mm	MSE	RF / W
4200 - 5900	Si	10	30	100	550	9	а	25
7500 - 8600	Si	100	30	100	550	9	а	30
9000	Si	13	20	100	550	9	b	22
800	AI	10	30	100	550	9	С	25
4500	Cu	12	30	100	550	9	С	27
9200	Glas	10	30	100	550	9	С	27

Tabelle 6.1.1: Beschichtungsexperimente mit einer Gasmischung von 5 Vol. % Methan in Helium.

Tabelle 6.1.2: Beschichtungsexperimente mit einer Gasmischung von 2 Vol % Acetylen in Helium.

Härte / MPa	Substrat	Druck / mbar	Dauer / min	Fluß /sccm	Substrat bias (9,55 kHz) / Vpp	Abstand / mm	MSE	RF / W
600	Si	10	30	100	550	9	а	25
700	Si	20	30	100	0	7	d	16
700	Si	20	15	100	550	9	b	20
600	Si	20	15	100 + 2 sccm H ₂	550	9	b	20
600	Si	20	15	100 +10 sccm H ₂	550	9	b	25

Neben den Substraten wurden auch die MSE variiert, Tabelle 6.1-3 gibt einen Überblick über die eingesetzten Systeme. Die Strukturen a, b und c (siehe Tabellen 6.1-1 und 6.1-2) hatten Abmessungen von 1,5 x 1,5 cm². Die Struktur d besaß Abmessungen von 1,8 x 3,6 cm².

Tabelle 6.1-3: Auflistung der in den Beschichtungsprozessen eingesetzten MSE a bis c. (EB = Elektrodenbreite, EA = Elektrodenabstand, H = Schichtdicke, M = Metall, T = Trägermaterial).

MSE	Serie	EB /μm	EA /μm	Η /μm	Μ	Т
а	F	1350	100	15	Cu	Glas
b	A	600	70	15	Cu	Glas
С	F	1350	70	15	Cu	Glas

Die Abstände zwischen Elektrodensystem und Substrat lagen typischerweise bei 7 bis 9 mm, wobei die Ausdehnung des Plasmas ca. 0,1 - 0,5 mm betrug, das Substrat sich also im after - glow - Bereich der Entladung befand und mit einer BIAS -Spannung versehen werden mußte, um die positiven Ionen CH^+ , CH_2^+ , CH_3^+ sowie C_2^+ und C^{2+} auf das Substrat zu beschleunigen. Am effektivsten erwies sich eine BIAS - Spannung von 550 Vpp bei einer Frequenz von 9,55 kHz. Bei geerdetem Substrat oder einem DC - BIAS von -200 bis -300 V konnten keine haftenden Schichten erzeugt werden.

Härte und Filmdicke der Schichten wurden bei der Robert Bosch GmbH, Stuttgart untersucht. Die Filmdicken lagen in einem Bereich von 5 - 10 μ m. Die Härten der Schichten betrugen typischerweise 600 - 9200 MPa. Die Härte der Schichten wurde mittels Mikrohärtemessung nach dem Kalottenschliff - Verfahren ermittelt. Die Härte ist dabei als der Widerstand definiert, den ein Körper dem Eindringen eines anderen entgegensetzt. Meßgröße ist somit der Härteeindruck, also die bleibende Verformung durch die plastische Deformation eines Körpers beim Eindringen eines Prüfkörpers unter einer bestimmten Kraft. Dabei wurden zur Charakterisierung jeder Schicht jeweils 10 Probemessungen mit zwei verschiedenen Kräften (5 mN und 10 mN) durchgeführt, um eine Aussage über die Reproduzierbarkeit der Messwerte treffen zu können.

Es zeigte sich, daß mit dem eingesetzten Methan / Helium - Gemisch größere Schichthärten bis 9200 MPa erreicht werden konnten als mit Acetylen / Helium -Gemischen mit durchschnittlichen Schichthärten um 600 MPa. Eine Zudosierung von Wasserstoff zu dem Acetylen / Helium Gemisch hatte keinen Einfluß auf die Härte des abgeschiedenen Filmes. Daß das Methan / Helium - Gemisch zur Abscheidung härterer Schichten besser geeignet ist, kann mit der höheren Konzentration der für den Beschichtungsprozeß wesentlichen Ionen CH_3^+ , CH_2^+ und CH^+ , C_2^+ , C^{2+} , sowie Radikale, wie beispielsweise •CH₃ im Metan / Helium - Gemisch begründet werden.

Neben der Bestimmung von Härte und Filmdicke stand ein Rasterelektronenmikroskop (REM) zur Charakterisierung der Schichten zur Verfügung. Abb. 6.1-3 zeigt eine REM - Aufnahme einer Kratzspur in einer C - Schicht auf einem Silicium - Substrat. Die Schicht wurde aus einem Gasgemisch aus 5 Vol.% Methan in Helium bei einem Druck von 10 mbar und einem Gasfluß von 100 sccm abgeschieden. Die Beschichtungsdauer betrug 30 min, die RF-Leistung lag bei 25 W. Das Silicium - Substrat befand sich in einem Abstand von 9 mm zur MSE auf einer Metallplatte, an die eine Spannung von 550 Vpp bei einer Frequenz von 9,5 kHz angelegt war. Die Härte der Schicht betrug, wie auch aus Tabelle 6.1-1 ersichtlich 4200 - 5900 MPa.

Abb. 6.1-3: Kratzsspur in einer C - Schicht auf einem Silicium - Substrat.

Die in Abb. 6.1-3 dargestellte C - Schicht wurde mittels EDX untersucht. Erwartungsgemäß findet man in der dargestellten Kratzspur überwiegend Silicium, also das freigelegte Trägermaterial, während neben der Kratzspur der Kohlenstoff aus der Schicht nachzuweisen ist.

Die eingesetzten MSE mit einer Größe von jeweils 15 x 15 mm² führen entsprechend dieser Dimensionen nur zu relativ kleinen Plasmaflächen und erlauben daher nur die Beschichtung ähnlich dimensionierter Substrate. Weitere MSE mit größeren Abmessungen bis zu 5,0 x 5,0 cm² und damit auch größeren aktiven Plasmaflächen wurden untersucht. Für Oberflächenmodifizierungen sind aber noch deutlich großflächigere Plasmamodule von Interesse. Solche Plasmaflächen lassen sich aus mehreren MSE aufbauen, wie bereits in Kapitel 5.5 beschrieben.

Die in diesem Kapitel gezeigten Ergebnisse belegen das Potential der MSE für die gegenüber Abscheidung harter Schichten. Ein großer Vorteil klassischen Beschichtungssystemen, die im Niederdruckbereich arbeiten, ist die Möglichkeit Beschichtungen auch bei vergleichsweise hohen Drücken um 100 mbar und damit ohne aufwendige Vakuumtechnologie und bei geringen Anlagekosten durchzuführen. Bei weiterer Druckerhöhung bis zu einer Atmosphäre bleiben die Plasmen in den verwendeten Gasmischungen mit Helium als Trägergas zwar stabil und stehen für Beschichtungsexperimente bei Atmosphärendruck zur Verfügung, jedoch lassen sich derzeit noch keine haftenden Schichten erzeugen, vielmehr führen die hohen Abscheideraten zu pulverförmigen Produkten, die sich nicht mehr auf dem Substrat verdichten lassen. Interessant wäre in diesem Zusammenhang eine Untersuchung des Einflusses des Substrat - Bias. Die hier vorgestellten Messungen wurden bei einer konstante Bias -Spannung von 550 Vpp gefahren. Möglicherweise ist durch eine höhere Bias - Spannung eine größere Verdichtung der C - Schichten auf dem Substrat zu erreichen. Auch wurden die Substrate bisher, abgesehen von einer Reinigung mit Aceton, keiner besonderen Vorbehandlung zur besseren Schichthaftung unterzogen und nicht, wie bei klassischen Beschichtungsprozessen üblich, beheizt. Hier besteht also noch Forschungsbedarf für zukünftige Arbeiten.

6.2 Charakterisierung des Beschichtungsgases mittels QMS

Zur Charakterisierung der Beschichtungsprozesse im MSE - Plasma wurde die Quadrupolmassenspektrometrie eingesetzt (Abb. 6.2-1). Die Massenspektren der eingesetzten Beschichtungsgase (2 Vol.% Acetylen in Helium bzw. 5 Vol.% Methan in Helium) wurden aufgezeichnet. Detektiert wurden dabei die folgenden Spezies:

 $\begin{array}{l} \mathsf{m/z}=1\ (\mathsf{H}^{+}),\ 2\ (\mathsf{H_{2}^{+}}),\ 6\ (\mathsf{C}^{2^{+}}),\ 12\ (\mathsf{C}^{+}),\ 13\ (\mathsf{CH}^{+}),\ 14\ (\mathsf{CH_{2}^{+}}),\ 15\ (\mathsf{CH_{3}^{+}}),\ 16\ (\mathsf{CH_{4}^{+}}),\ 24\ (\mathsf{C_{2}^{+}}),\ 26\ (\mathsf{C_{2}H_{2}^{+}}),\ 27\ (\mathsf{C_{2}H_{3}^{+}}),\ 28\ (\mathsf{C_{2}H_{4}^{+}}),\ 29\ (\mathsf{C_{2}H_{5}^{+}}),\ 30\ (\mathsf{C_{2}H_{6}^{+}}),\ 39\ (\mathsf{C_{3}H_{3}^{+}}),\ 40\ (\mathsf{C_{3}H_{4}^{+}}),\ 41\ (\mathsf{C_{3}H_{5}^{+}}),\ 42\ (\mathsf{C_{3}H_{5}^{+}}),\ 43\ (\mathsf{C_{3}H_{7}^{+}}),\ 44\ (\mathsf{C_{3}H_{8}^{+}}),\ 55\ (\mathsf{C_{4}H_{7}^{+}}),\ 57\ (\mathsf{C_{4}H_{9}^{+}}),\ 77\ (\mathsf{C_{6}H_{5}^{+}}),\ 78\ (\mathsf{C_{6}H_{6}^{+}}). \end{array}$

Abb. 6.2-1: Abbau des Methans in einer Gasmischung aus 5 Vol.% CH₄ in Helium bei einem Gasfluß von 100 sccm und einem Druck von 100 mbar.

Abb. 6.2-2: Produktbildung in einer Entladung in einem Gasgemisch aus 5 Vol.% Methan in Helium bei 100 mbar und einem Gasfluß von 100 sccm.

Abb. 6.2-2 und 6.2-3 veranschaulichen die Produktbildung. Es entstehen neben Fragmenten wie C_2^+ und C^{2+} höhere Kohlenwasserstoffe mit C_2 und C_3 - Ketten. Beobachtet wird der Aufbau folgender Spezies (m/z): C_2^+ (24), C^{2+} (6), $C_2H_2^+$ (26), $C_2H_3^+$ (27), $C_2H_4^+$ (28), $C_2H_5^+$ (29), $C_2H_6^+$ (30), $C_3H_3^+$ (39), $C_3H_5^+$ (41), $C_3H_6^+$ (42), $C_3H_7^+$ (43).

Abb. 6.2-3: Produktbildung in einer Entladung in einem Gasgemisch aus 5 Vol.% Methan in Helium bei 100 mbar und einem Gasfluß von 100 sccm.

In den Abbildungen 6.2-1 bis 6.2-3 ist der Abbau von Methan und der Aufbau der Produkte höherer gesättigter und ungesättigter Kohlenwasserstoffe mit C₂ - und C₃ - Ketten dargestellt. Der Druck während der Messung war vergleichbar mit den Druckbereichen bei denen die Beschichtungsexperimente durchgeführt wurden und betrug bei einem Gasfluß von 100 sccm 100 mbar. Die Abbaurate für Methan lag bei 17 %. Die Messung zeigt jeweils zwei Zyklen. Beim ersten Zyklus ist die Reaktion ohne BIAS - Spannung am Substrat gezeigt. Beim zweiten Zyklus liegt eine BIAS-Spannung von 550 Vpp (9,55 kHz) am Substrat an. Beim Vergleich beider Zyklen wird deutlich, daß diese BIAS - Spannung keinen Einfluß auf den Methan - Abbau und die zugehörige Produktbildung ausübt. Sie dient lediglich der Beschleunigung der gebildeten positiven Ionen auf das Substrat. Als Produkte entstehen neben Fragmenten wie C₂⁺ (m/z = 24) und C²⁺ (m/z = 6) höhere Kohlenwasserstoffe mit C₂ und C₃ - Ketten. Beobachtet wird der Aufbau folgender Spezies: C₂⁺ (m/z = 24), C²⁺ (6), C₂H₂⁺ (26), C₂H₃⁺ (27), C₂H₄⁺ (28), C₂H₅⁺ (29), C₂H₆⁺ (30), C₃H₃⁺ (39), C₃H₅⁺ (41), C₃H₆⁺ (42), C₃H₇⁺ (43).

Abb. 6.2-4: Konzentrationsverlauf einiger Spezies in einer Entladung in einem Gemisch aus 2 Vol.% Acetylen in Helium bei 100 mbar und einem Gasfluß von 100 sccm.

Abb. 6.2-5: Produktbildung in der Entladung in einem Gasgemisch von 2 Vol.% Acetylen in Helium.

Die Abbildungen 6.2-4 und 6.2-5 zeigen analoge Massenspektren für das Beschichtungsgasgemisch 2 Vol.% Acetylen in Helium. Der Betriebsdruck lag auch hier bei 100 mbar bei einem Gasfluß von 100 sccm. Die Messung wurde leistungsabhängig gefahren, bei Leistungen von 25, 30, 35 und 40 W, entsprechend 35, 42, 49 und 56 W/cm². Die Abbauraten für Acetylen liegen bei ca. 50 %. Die Produkte sind: H_2^+ (m/z = 2), $C_2H_4^+$ (28), $C_3H_8^+$ (44), $C_2H_5^+$ (29), $C_2H_6^+$ (30), C^{2+} (6). Neben dem Abbau des Acetylens ist auch eine Konzentrationsabnahme der Spezies C_2^+ (m/z = 6), C^+ (12), H^+ (1), CH^+ (13), $C_3H_6^+$ (42) und $C_3H_7^+$ (43) zu beobachten. Dabei ist der Abbau der im Massenspektrometer erzeugten

Fragmentionen H⁺, CH⁺ und C₂⁺ der Abnahme der Acetylenkonzentration naturgemäß proportional.

7. Zusammenfassung

Die auf nicht thermischen Plasmen basierende Plasmatechnik stellt bereits heute aufgrund ihres breiten Anwendungspotenzials (z. B. Energie-, Medizin-, Textil- und Umwelttechnik, Halbleiter- und Automobilindustrie) eine Schlüsseltechnologie dar, deren Bedeutung indessen in Zukunft noch weiter wachsen wird. Die dabei zum Einsatz kommenden Plasmen werden auch als Nichtgleichgewichtsplasmen bezeichnet, da die Elektronen hohe mittlere kinetische Energien aufweisen – äguivalent zu mehreren 10.000 K –, während die Temperatur der Ionen und Neutralteilchen maximal einige 100 °C beträgt. In der Technik werden nicht thermische Plasmen überwiegend mittels elektrischer Gasentladungen erzeugt. deren Anregung entweder einen niedrigen Druck oder aber ein starkes elektrisches Feld erfordert. Der Einsatz der Plasmatechnik bei niedrigen Drücken ist jedoch zum einen mit geringen Umsatzraten und zum anderen mit hohen Investitionskosten für Vakuumanlagen verbunden. Andererseits erfordern Plasmaanwendungen bei Atmosphärendruck entsprechend hohe Spannungen (bis zu einigen 10 kV), um die notwendig hohen Feldstärken zu realisieren, nachdem sich die Elektrodenabstände in konventionellen Entladungsanordnungen in der Regel im Millimeter- bzw. Zentimeterbereich bewegen (z. B. Barriereentladungen oder Koronaentladungen).

Eine überraschend einfache Alternative zur Lösung der aufgezeigten Problematik – die Erzeugung von Plasmen bei Atmosphärendruck mit moderaten Spannungen – wurde in dieser Arbeit mit der Verringerung des Elektrodenabstandes realisiert. F. PASCHEN fand bereits 1889, dass sich die Zündspannung U_z einer Gasentladung nicht verändert, sofern das Produkt aus Druck und Elektrodenabstand konstant gehalten wird (PASCHEN-Gesetz): U_z = f(pd). In dieser Arbeit wurden die modernen Methoden der Mikrostrukturtechnik als eine relativ neue Möglichkeit zur Realisierung kleiner Elektrodenabstände genutzt, um erstmalig homogene, flächige Plasmen bei Atmosphärendruck zu erzeugen. Mit Hilfe der Mikrostrukturtechnik können Mikrostrukturierte Elektrodensysteme (MSE) gefertigt werden, bei denen sich der Elektrodenabstand im Bereich von wenigen 10 µm bis wenigen 100 µm bewegt, so dass die zur Initiierung des elektrischen Durchbruchs nötige Feldstärke bereits mit moderaten Spannungen von wenigen 100 V erreicht wird, und somit Gasentladungen über einen weiten Druckbereich, insbesondere auch bei Atmosphärendruck, erzeugt werden können. Das Erscheinungsbild der MSE-Entladungen ist mit dem von Niederdruck-Glimmentladungen vergleichbar.

Die potenziellen Anwendungsmöglichkeiten der MSE sind sehr vielfältig. So ist eine Nutzung auf dem Gebiet der Oberflächentechnik (Reinigen, Beschichten, Ätzen, Modifizieren), im Bereich der Lichterzeugung (z. B. als Spektrallampe) oder auf dem breit gefächerten Sektor der Abgasnachbehandlung (z. B. NO_x) denkbar. Auch ein Einsatz in der plasmachemischen Synthese (z. B. Acetylen (HC=CH) aus Methan (CH₄)) ist vorstellbar.

Zielsetzung der durchgeführten Untersuchungen war es, unter Variation der relevanten geometrischen und elektrischen MSE-Parameter eine grundlegende Charakterisierung der in verschiedenen Gasen (u. a. Helium, Neon, Argon, Krypton, Xenon und Stickstoff) erzeugten Entladungen vorzunehmen, um in möglichst hohe Druckbereiche vorzudringen.

Die eingesetzten MSE bestehen aus parallelen Metallstreifen aus Chrom, Gold oder Kupfer mit einer Breite zwischen 10 μ m und 2000 μ m und einer Länge zwischen etwa 10 mm und 25 mm, die auf einem Dielektrikum (Glas, Keramik, Silizium) als Träger aufgebracht sind. Kontaktflächen verbinden die einzelnen Streifenelektroden so miteinander, dass schließlich zwei ineinander greifende Kammstrukturen mit Elektrodenabständen zwischen 10 μ m und 400 μ m resultieren. Zwischen den Mikroelektroden wird dadurch im oberflächennahen Bereich mit einer Spannung von wenigen 100 V problemlos eine Feldstärke von 10⁵ V/cm reali-

siert, während an den Elektrodenkanten bzw. -enden durch Feldüberhöhungen Werte von 10^6 V/cm und mehr erreicht werden. Die MSE mit Größen zwischen 10 mm × 10 mm und 50 mm × 50 mm werden mit Hilfe lithographischer Techniken aus planaren Substraten hergestellt, auf die zuvor Metallschichten aufgebracht worden sind. Die fertig strukturierten Systeme können dann nachfolgend noch durch galvanische Prozesse verstärkt werden.

Neben der Ermittlung der fundamentalen äußeren Betriebsparameter bestand ein weiteres Ziel der Arbeit darin, eine entsprechende Plasmadiagnostik aufzubauen, die eine Charakterisierung der elementaren plasmaphysikalischen und plasmachemischen Prozesse erlaubt. Zur *in situ* Charakterisierung wurde dabei die optische Emissionsspektroskopie (OES) sowie die laserinduzierte Fluoreszenzspektroskopie (LIF) eingesetzt. Während mit Hilfe der OES nur elektronisch *angeregte* Spezies erfasst werden können, erlaubt die LIF-Technik darüber hinaus eine Charakterisierung von Spezies im elektronischen *Grundzustand*, was zur Bestimmung der Temperatur des Neutralgases genutzt wurde, indem rotationsaufgelöste Fluoreszenzanregungsspektren ausgewertet wurden. Zur Durchführung der End-produktanalytik wurde ein Quadrupolmassenspektrometer (QMS) aufgebaut, mit welchem die Konzentration relevanter Spezies bis zu einem Einlassdruck von 1000 mbar online beobachtet werden konnte.

Die ersten experimentellen Untersuchungen zur Erzeugung von elektrischen Gasentladungen wurden mit DC-betriebenen MSE durchgeführt (20 MSE-Varianten, Chromelektroden, verschiedene Glasträger, 50 mm \times 50 mm). In Helium und Neon konnte damit eine homogene Entladung bis zu einem Gasdruck von 40-50 mbar erzeugt werden. In Argon, Krypton, Xenon, Stickstoff und Wasserdampf waren homogene, flächige Entladungen bis zu einem Druck von 5-15 mbar stabil zu betreiben. Eine signifikante Abhängigkeit des möglichen Betriebsdrucks von den geometrischen Parametern der Arrays war jeweils nicht feststellbar. In allen verwendeten Gasen bildet sich die Entladung mit einer typischen Dicke von etwa 0,5–1,5 mm direkt über der MSE-Oberfläche aus, wobei die Dicke mit steigendem Druck abnimmt. Bei Drücken oberhalb der genannten Werte nimmt die von der Entladung bedeckte Fläche mit steigendem Druck kontinuierlich ab. Der maximale Druck, bei dem noch (punktförmige) Entladungen erzeugt werden konnten, lag bei etwa 120 mbar bis 140 mbar in Helium und Neon und bei ca. 25-50 mbar in den übrigen untersuchten Gasen. Die Brennspannung lag zwischen -200 V und -500 V, der Entladungsstrom zwischen 0,1 mA und 2,0 mA. Die Strom-Spannungs-Charakteristik weist eine positive Steigung auf, so dass MSE-Entladungen hier einer normalen Niederdruck-Glimmentladung gleichen. Eine einfache Abschätzung der Leistungsaufnahme ergibt eine Flächenleistungsdichte von etwa 15- 50 mW/cm^2 .

Die Temperatur des Neutralgases im elektronischen Grundzustand wurde bestimmt. Die Auswertung rotationsaufgelöster LIF-Spektren des NO ($A^2\Sigma^+ \leftarrow X^2\Pi_{1/2}$) ergab für Messungen in Helium eine Temperatur von (316 ± 24) K, was unter Berücksichtigung des Fehlers zeigt, dass die Zündung des Plasmas keinen signifikanten Einfluss ($\Delta T = (28 \pm 28)$ K) auf die Neutralgastemperatur hat und diese folglich der Umgebungstemperatur, d. h. der Raumtemperatur entspricht. Demnach handelt es sich bei den mit MSE erzeugten Plasmen erwartungsgemäß um Niedertemperaturplasmen, bei denen sich die einzelnen Teilsysteme (Elektronen, Ionen, Neutralgas) untereinander nicht im thermischen Gleichgewicht befinden.

Mit auf Siliziumbasis gefertigten MSE (30 mm \times 30 mm) mit TiW/Au-Elektrodenschichtsystem konnten stabile, flächige Heliumentladungen nur bis zu einem Druck von 4–8 mbar erzeugt werden, während der maximal erreichbare Druck bei etwa 25 mbar lag. Silizium ist aufgrund seiner elektrischen Eigenschaften in der verwendeten Form (0,5 µm dicker Wafer mit einer dünnen Oxidschicht) ein weniger geeignetes Trägermaterial für MSE.

Wesentlicher Hintergrund von Untersuchungen, die mit einer Serie von 36 verschiedenen Arrays der Größe 10 mm × 10 mm (Glasträger, TiW/Au-Elektroden) durchgeführt wurden, war die Klärung der Frage, ob und inwieweit sich Korrelationen zwischen den variierten Abmessungen (Elektrodenabstand: 10–400 μ m, Kathodenbreite: 10–400 μ m, Länge des Kathodenvorwiderstandes: 750 μ m, 1500 μ m) und dem erreichbaren Betriebsdruck im DC-Betrieb herstellen lassen. Mit diesem Array-Typ wurden ähnliche Betriebsdrücke erreicht, wie schon zuvor mit den 50 mm × 50 mm großen MSE. Flächige Plasmen lassen sich mit einer Spannung zwischen –600 V und –1000 V im Bereich von 20 mbar bis 40 mbar stabil in Helium betreiben. Obwohl der Elektrodenabstand bzw. die Kathodenbreite um einen Faktor 4 bzw. 8 variiert, erstrecken sich die realisierten Betriebsdrücke also auf einen Bereich von nur 20 mbar, wobei zudem keine systematische Abhängigkeit von den Geometrieparametern festgestellt werden konnte. In einem weiten *pd*-Intervall (0,01–0,4 mbar · cm) wurde eine vom Elektrodenabstand praktisch unabhängige und relativ niedrige Zündspannung von -300 V bis –500 V ermittelt.

Zusammenfassend lässt sich festhalten, dass mit DC-betriebenen MSE im Rahmen dieser Arbeit Betriebsdrücke bis etwa 150 mbar realisiert werden konnten, wobei gegenwärtig die aufzubringende Flächenleistungsdichte den limitierenden Faktor bei der Plasmaerzeugung darstellt. Ein direkter Einfluss des Elektrodenmaterials auf die elektrischen Parameter bzw. auf die Stabilität der Gasentladungen konnte nicht beobachtet werden, ebenso konnte kein Einfluss der Materialparameter der unterschiedlichen Glasträger auf die elektrischen Eigenschaften des Plasmas bzw. auf den möglichen Betriebsdruck oder die Stabilität der Entladung festgestellt werden. Der DC-Betrieb erweist sich bei Drücken ab etwa 100-150 mbar als weniger geeignet. Nur äußerst genau gefertigte Elektrodenstrukturen erlauben dann noch die Ausbildung eines flächigen, homogenen Plasmas. Die Erweiterung des Arbeitsdruckbereichs bis hin zu 1000 mbar bzw. darüber hinaus konnte schließlich mit HF-betriebenen (13,56 MHz) MSE realisiert werden, wobei etwa 100 verschiedene Array-Varianten untersucht wurden. Im HF-Betrieb ist es bei Atmosphärendruck möglich, mit MSE flächige und homogene Gasentladungen in Helium und Neon routinemäßig zu erzeugen. Zum Betrieb dieser Entladungen sind nur moderate Zünd- bzw. Brennspannungen (etwa 200 V effektiv) erforderlich. Die typischerweise benötigte Leistungsdichte beträgt etwa 3–6 W/cm². Der wesentliche Unterschied der HF-Plasmen gegenüber mit Gleichspannung betriebenen Plasmen liegt in der Beweglichkeit der Ionen, die im HF-Feld

Zumischungen von molekularen Gasen (z. B. N₂, O₂) zu Helium- oder Neonplasmen waren bis etwa 10 Vol.% möglich, ohne dass deren Stabilität beeinträchtigt wurde. Der HF-Betrieb der MSE mit anderen Gasen als Helium oder Neon, beispielsweise mit Argon oder Stickstoff, erfordert eine weitaus höhere Flächenleistungsdichte von etwa 40–70 W/cm². Dies ist mit einer höheren Wärmebelastung der MSE verbunden, so dass die mit diesen Gasen realisierbaren Arbeitsdrücke bei den zur Verfügung stehenden Elektroden-Arrays auf maximal 250 mbar (flächige Entladungen bis 130 mbar) begrenzt waren. Hier müssen zukünftig optimierte Systeme entworfen und hergestellt werden, die auch einer hohen Wärmebelastung standhalten können.

praktisch still stehen. Lediglich die Elektronen tragen zum Ladungstransport bei.

Zur Evaluierung des Anwendungspotenzials von MSE sind quantitative Messungen zur plasmachemischen Umsetzung von Stickoxiden (NO_x) in HF-MSE-Entladungen mit Hilfe der QMS in Helium und Argon durchgeführt worden. Das wesentliche Ergebnis dieser Messungen ist, dass, abhängig von der Gaszusammensetzung, vor allem aber in Abhängigkeit von der elektrischen Leistung und der Durchflussrate, sowohl der Aufbau als auch der Abbau von NO initiiert werden kann. Diese Steuerungsmöglichkeiten machen MSE für Anwendungen außerordentlich interessant. In der Heliumentladung findet erwartungsgemäß ein Abbau von NO_x in N₂ und O₂ statt. Beim NO sind dies bei einer Leistungsdichte von etwa 3–5 W/cm² bis zu 65 %, beim NO₂ bis zu 40 %. Eine Bildung höherer Stickoxide (z. B. NO₃ oder N₂O₅) wurde nicht beobachtet. Mit Glas als Trägermaterial konnten sowohl beim NO als auch beim NO₂ um 7–15 % höhere Abbauraten erreicht werden als mit einem Keramikträger. Die Abbauraten können zukünftig deutlich optimiert werden, da im eingesetzten Plasmareaktor noch keine bestmögliche Führung des Gasstromes durch das Plasma realisiert war und somit ein zu großes Totvolumen vorherrschte. Bei moderaten Gasflüssen um 250 sccm wird mit Steigerung der HF-Leistungsdichte in Helium ein höherer NO_x-Abbau erzielt. Bei einem vergleichsweise kleinen Durchfluss von ca. 30–50 sccm geht dagegen der NO-Umsatz mit steigender HF-Leistung zurück. Auch in Argon findet bei moderaten Gasdurchflussraten ein Abbau von NO statt. Der Übergang zu kleinen Durchflussraten (10 sccm) bewirkt hier jedoch im Unterschied zum Helium einen NO-*Aufbau*. Danach ist eine Steuerung der NO-Konzentration durch den Einsatz von MSE möglich.

Als Alternative zur Massenspektrometrie bietet sich der Einsatz der OES zur Charakterisierung plasmachemischer Prozesse an, was im Fall der MSE an Stickstoffentladungen mit einer Zumischung von 5 Vol.% Tetrafluormethan (CF₄) durchgeführt wurde. Ein direkter Nachweis von Abbauprodukten wie CF oder CF₂ ist jedoch nicht möglich, da im in Frage kommenden Wellenlängenbereich (200–350 nm) zum einen die γ -Banden des Stickstoffmonoxids ($A^{2}\Sigma^{+}-X^{2}\Pi$) und zum anderen Banden des N₂-Moleküls ($C^{3}\Pi_{u}-B^{3}\Pi_{g}$) bzw. N₂⁺-Molekülions ($B^{2}\Sigma_{u}^{+}-X^{2}\Sigma_{g}^{+}$) mit einer hohen Intensität auftreten. Es ist jedoch möglich, zwischen 380 nm und 390 nm das CN-Radikal nachzuweisen. Dabei wurde untersucht, wie die Intensität der CN-Bande von der Höhe der eingekoppelten HF-Leistung abhängt. Als Maß für die Abhängigkeit wurde das Verhältnis des Maximums bei 388,3 nm zum 0–0-Übergang im B-X-System des N₂⁺ bei 391,44 nm gewählt. Es wird eine Zunahme des Verhältnisses mit steigender HF-Leistung beobachtet. Damit besteht die Möglichkeit, die Bildung dieses unerwünschten Abbauproduktes, welche durch höhere HF-Leistungen begünstigt wird, *in situ* zu kontrollieren bzw. entsprechend zu steuern.

Neben Prozessen zur Abgasbehandlung wurde die Beschichtung von Oberflächen mit harten C - Schichten untersucht. Im Vergleich beider Anwendungsgebiete zeigt sich, daß die MSE-Plasmaquelle besonders im Bereich der Oberflächenmodifizierung vielversprechende Möglichkeiten bietet. So ließen sich C - Schichten mit Härten bis zu 9000 MPA aus Methan / Helium Gemischen auf Silicium Substraten abscheiden.

Während klassische Beschichtungsprozesse im Niederdruckbereich bei wenigen mTorr bis maximal 10 Torr betrieben werden müssen, bieten MSE die Möglichkeit der Schichtabscheidung bei vergleichsweise hohen Drücken zwischen 10 und 100 mbar. Weiterer Forschungsbedarf besteht bei der Ausdehnung dieser Erfahrungen auf weitere Schichten anderer chemischer Zusammensetzung, beispielsweise auf Siliciumnitrid -, Siliciumoxid - oder amorphe a - (Si:H) Schichten.

Neben den in dieser Arbeit vorgestellten Beschichtungsexperimenten bestehen bereits erste Erfahrungen zur Oberflächenmodifizierung mittels MSE - Plasmen. Bei dem Verbundprojektpartner FA Bosch kamen MSE zur Entladung von elektrisch aufgeladenen Folien zum Einsatz. Typische Folien, wie sie beispielsweise zur Verpackung von Lebensmitteln benutzt werden, weisen häufig Restspannungen von bis zu 2 kV auf. Um diesen beim Wickeln oder Behandeln solcher Folien störenden Effekt zu minimieren, können die Folien einem MSE - Plasma ausgesetzt werden. Sowohl DC als auch HF betriebene MSE kamen dabei zum Einsatz. Die in einem Abstand von 1,5 bis 20 mm von der MSE plazierten Folien wurden zunächst auf Spannungen von 2 kV aufgeladen. Nach einer

Behandlung im Heliumplasma bei Atmosphärendruck betrug die Restspannung nur noch < 300 V. Bei der Behandlung bei Drücken um 20 mbar konnten sogar Restspannungen unter 50 V erreicht werden.

Sowohl bei der FA Bosch, als auch am Institut für Kernphysik in Frankfurt / Main wurden Experimente zur Benetzbarkeit von Folien nach einer Oberflächenmodifizierung durch MSE-Plasmen durchgeführt. Nach einer Behandlung der Folien im MSE - Plasma in Helium bei Atmosphärendruck konnte eine deutliche Reduktion des Kontaktwinkels von Wasser beobachtet werden.

Für die Zukunft denkbar wäre auch das Aufbringen der Elektrodenstrukturen auf flexible Dielektrika, beispielsweise auf Folien, so daß die MSE dann der Geometrie bestimmter zu modifizierender Substrate genau angepaßt werden könnten. Somit wären auch gekrümmte oder nur schwer zugängliche Oberflächen mittels der MSE -Plasmen zu bearbeiten.

Zusammenfassend lässt sich feststellen, dass es mit Hilfe der MSE erstmalig gelungen ist, flächige, homogene Plasmen im atmosphärennahen Druckbereich zu realisieren, deren hohes Anwendungspotenzial bereits an einigen Beispielen demonstriert werden konnte.

Literaturverzeichnis

[AISENBERG 71]	S. AISENBERG, R. CHABOT, J. Appl. Phys. 42, 2953, (1971)
[ANDERSON 79]	L. P. ANDERSON et. al., Thin Solid Films, 58, 155, (1979)
[BARTNIKAS 68]	R. BARTNIKAS, Brit. J. Appl. Phys. (J. Phys. D.) Ser. 2, 1 , 659–661 (1968).
[BIBOROSCH 99]	L. D. BIBOROSCH, O. BILWATSCH, S. ISH-SHALOM, E. DEWALD, U. ERNST and K. FRANK, "Microdischarges with plane cathodes", Appl. Phys. Lett. 75 , 3926–3928 (1999).
[Boeuf 97]	J. P. BOEUF, C. PUNSET, A. HIRECH and H. DOYEUX, "Physics and Modeling of Plasma Display Panels", J. Phys. IV France 7 , C4-3 bis C4-14 (1997).
[BÜTTGENBACH 91]	S. BÜTTGENBACH, Mikromechanik (Teubner, Stuttgart, 1991).
[BRÄUNING-DEMIAN 00]	A. BRÄUNING-DEMIAN, L. SPIELBERGER, C. PENACHE, H. SCHMIDT- BÖCKING, "A source of large-area atmospheric pressure discharges: Characterisation, electrical properties and spatially resolved photon emission", Proceedings of the XIII International Conference on Gas Discharges and their Applications (GD 2000), Glasgow, UK, 3.–8. September 2000, Vol. 1, 426–429.
[CRC 81]	<i>CRC Handbook of Chemistry and Physics</i> , edited by R. C. WEAST and M. J. ASTLE, 61 st ed. (CRC, Boca Raton, FL, 1981).
[Снаграк 68]	G. CHARPAK, R. BOUCLIER, T. BRESSANI, J. FAVIER, Č. ZUPANČIČ, Nucl. Instr. Meth. 62 , 262 (1968).
[Duerdoth 94]	I. DUERDOTH, S. SNOW, R. THOMPSON, N. LUMB, "A study of breakdown in microstrip gas chambers", Nucl. Instr. and Meth. A348 , 356–360 (1994).
[ELIASSON 91]	B. ELIASSON and U. KOGELSCHATZ, "Nonequilibrium Volume Plasma Chemical Processing", IEEE Trans. Plasma Sci. 19 , 1063–1077 (1991).
[FRAME 97]	J. W. FRAME, D. J. WHEELER, T. A. DETEMPLE, and J. G. EDEN, "Microdischarge devices fabricated in silicon", Appl. Phys. Lett. 71 , 1165–1167 (1997).
[Futamura 98]	S. FUTAMURA, A. ZHANG, G. PRIETO, and T. YAMAMOTO, "Factors and Intermediates Governing Byproduct Distribution for Decomposition of Butane in Nonthermal Plasma", IEEE Trans. Ind. Applicat. 34 , 967–974 (1998).
[Futamura 99]	S. FUTAMURA, A. ZHANG, and T. YAMAMOTO, "Mechanisms for Formation of Inorganic Byproducts in Plasma Chemical Processing of Hazardous Air Pollutants",
	IEEE Trans. Ind. Applicat. 35, 760–766 (1999).
-------------------	--
[Geßner 98]	C. GEBNER, "Emissionspektroskopie von Plasmen an mikrostruk- turierten Elektrodensystemen", Diplomarbeit, TU Braunschweig (1998).
[Geßner 01]	C. GEBNER, P. SCHEFFLER, K H. GERICKE, Micro - structured Electrode Arrays - Low - Temperature Discharges at Atmospheric Pressure, Contrib. Papers International Conference on Phenomena in Ionized Gases (XXV ICPIG), Nagoya, 2001, Vol. 4, p. 151 - 152
[Gherardi 00]	N. GHERARDI, S. MARTIN and F. MASSINES, "A new approach to SiO_2 deposit using a N ₂ –SiH ₄ –N ₂ O glow dielectric barrier- controlled discharge at atmospheric pressure", J. Phys. D: Appl. Phys. 33 , L104–L108 (2000).
[GIBALOV 00]	V. I. GIBALOV and G. J. PIETSCH, "The development of dielectric barrier discharges in gas gaps and on surfaces", J. Phys. D: Appl. Phys. 33 , 2618–2636 (2000).
[GIELEN 96]	J. W. A. M. GIELEN, Plasma Beam Deposition of Amorphous Hydrogenated Carbon, Dissertation, Eindhoven 1996
[Green 98]	N. G. GREEN and H. MORGAN, "Separation of submicrometre particles using a combination of dielectrophoretic and electro-hydrodynamic forces", J. Phys. D: Appl. Phys. 31 , L25–L30 (1998).
[GREEN 00]	N. G. GREEN, A. RAMOS and H. MORGAN, "Ac electrokinetics: a survey of sub-micrometre particle dynamics", J. Phys. D: Appl. Phys. 33 , 632–641 (2000).
[Grill]	A. GRILL, Cold Plasma in Materials Fabrication, IEEE Press, New York, S. 217 ff, S. 181 ff
[Hoeben 99]	W. F. L. M. HOEBEN, E. M. VAN VELDHUIZEN, W. R. RUTGERS and G. M. W. KROESEN, "Gas phase corona discharges for oxidation of phenol in an aqueous solution", J. Phys. D: Appl. Phys. 32 , L133–L137 (1999).
[INFOPHYSTECH 01]	Faltblatt INFO PHYS TECH Nr. 31, "Mikrostrukturierte Elektroden- systeme – Universelle Plasmen im Atmosphärendruckbereich", Herausgeber: VDI Technologiezentrum Physikalische Technologien, Düsseldorf, März 2001.
[JANZEN 92]	G. JANZEN, Plasmatechnik (Hüthig, Heidelberg, 1992).
[KANAZAWA 88]	S. KANAZAWA, M. KOGOMA, T. MORIWAKI, and S. OKAZAKI, "Stable glow plasma at atmospheric pressure", J. Phys. D: Appl. Phys. 21 , 838–840 (1988).

[Klein 95]	M. KLEIN, "Barrierenentladungen zur Entstickung motorischer Abgase", Dissertation, Karlsruhe (1995).
[KOGELSCHATZ 97]	U. KOGELSCHATZ, B. ELIASSON and W. EGLI, "Dielectric-Barrier Discharges. Principle and Applications", J. Phys. IV France 7 , C4-47 bis C4-66 (1997).
[KOGELSCHATZ 01]	U. KOGELSCHATZ, "Filamentary and diffuse barrier discharges", Beitrag zum APP Spring Meeting Bad Honnef 2001 "Diagnostics of Non-Equilibrium High Pressure Plasmas", Bad Honnef, 18.–21. Februar 2001.
[Kogoma 94]	М. КОGOMA, S. ОКАZAKI J. Phys. D: Appl. Phys. 27 , 1985–1987 (1994).
[Koinuma 92]	H. KOINUMA, H. OHKUBO, T. HASHIMOTO, K. INOMATA, T. SHIRAISHI, A. MIYANAGA, and S. HAYASHI, "Development and application of a microbeam plasma generator", Appl. Phys. Lett. 60 , 816–817 (1992).
[KUCHLING 95]	H. KUCHLING, <i>Taschenbuch der Physik</i> (Fachbuchverlag, Leipzig-Köln, 1995).
[LIEBERMAN 94]	M. A. LIEBERMAN and A. J. LICHTENBERG, <i>Priciples of Plasma Discharges and Materials Processing</i> (Wiley, New York, 1994).
[MASSINES 98A]	F. MASSINES, A. RABEHI, P. DECOMPS, R. B. GADRI, P. SÉGUR, and C. MAYOUX, "Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier", J. Appl. Phys. 83 , 2950–2957 (1998).
[MASSINES 98B]	F. MASSINES and G. GOUDA, "A comparison of polypropylene- surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure", J. Phys. D: Appl. Phys. 31 , 3411–3420 (1998).
[Menz 97]	W. MENZ, J. MOHR, <i>Mikrosystemtechnik für Ingenieure</i> , 2., erweiterte Auflage (VCH, Weinheim, 1997).
[Montie 00]	T. C. MONTIE, K. KELLY-WINTENBERG, and J. R. ROTH, "An Overview of Research Using the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) for Sterilization of Surfaces and Materials", IEEE Trans. Plasma Sci. 28 , 41–50 (2000).
[Mort 86]	J. MORT, F. JANSEN, Eds., Plasma Deposited Thin Films, 1986 CRC Press, Inc.
[Nomura 99]	T. NOMURA, Y. EHARA, H. KISHIDA, and T. ITO, "A Study of NO Removal by Packed-Beads Discharge Reactor", IEEE Trans. Ind. Applicat. 35 , 1318–1322 (1999).

[Oed 88]	A. OED, "Position-sensitive detector with microstrip anode for electron multiplication with gases", Nucl. Instr. and Meth. A263 , 351–359 (1988).
[Oed 91]	A. OED, P. GELTENBORT, C. BUDTZ-JØRGENSEN, "Substratum and layout parameters for microstrip anodes in gas detectors", Nucl. Instr. and Meth. A310 , 95–97 (1991).
[Оенме 96]	М. ОЕНМЕ, <i>Praktische Einführung in die GC/MS-Analytik mit</i> Quadrupolen (Hüthig, Heidelberg, 1996).
[Ogata 99]	A. OGATA, N. SHINTANI, K. MIZUNO, S. KUSHIYAMA, and T. YAMAMOTO, "Decomposition of Benzene Using a Nonthermal Plasma Reactor Packed with Ferroelectric Pellets", IEEE Trans. Ind. Applicat. 35 , 753–759 (1999).
[Окаzакі 93]	S. OKAZAKI, M. KOGOMA, M. UEHARA, and Y. KIMURA, "Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source", J. Phys. D: Appl. Phys. 26 , 889–892 (1993).
[Park 00]	SJ. PARK, C. J. WAGNER, C. M. HERRING, and J. G. EDEN, "Flexible microdischarge arrays: Metal/polymer devices", Appl. Phys. Lett. 77 , 199–201 (2000).
[Park 01A]	J. PARK, I. HENINS, H. W. HERRMANN, and G. S. SELWYN, "Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source", J. Appl. Phys. 89 , 15–19 (2001).
[Park 01B]	J. PARK, I. HENINS, H. W. HERRMANN, G. S. SELWYN, R. F. HICKS, "Discharge phenomena of an atmospheric pressure radio- frequency capacitive plasma source", J. Appl. Phys. 89 , 20–28 (2001).
[Penache 00]	C. PENACHE, A. BRÄUNING-DEMIAN, L. SPIELBERGER and H. SCHMIDT-BÖCKING, "Experimental study of high pressure glow discharges based on MSE arrays", HAKONE VII, International Symposium on High Pressure Low Temperature Plasma Chemistry, Greifswald, 10.–13. September 2000, Contributed Papers, Vol. 2, 501–505.
[Penache 01]	C. PENACHE, L. SPIELBERGER, A. BRÄUNING-DEMIAN, D. PENACHE, O. HOHN and H. SCHMIDT-BÖCKING, "Optical investigations of high pressure glow discharges based on MSE arrays", Beitrag zum APP Spring Meeting Bad Honnef 2001 "Diagnostics of Non-Equilibrium High Pressure Plasmas", Bad Honnef, 18.–21. Februar 2001.
[Penetrante 93]	<i>Non-Thermal Plasma Techniques for Pollution Control:</i> <i>Part A and B</i> , edited by B. M. PENETRANTE and S. E. SCHULTHEIS (Springer, Berlin, 1993).

[Puchkarev 97]	V. PUCHKAREV and M. GUNDERSEN, "Energy efficient plasma processing of gaseous emission using a short pulse discharge", Appl. Phys. Lett. 71 , 3364–3366 (1997).
[RAIZER 97]	YU. P. RAIZER, Gas Discharge Physics (Springer, Berlin, 1997).
[Котн 95]	J. REECE ROTH, <i>Industrial Plasma Engineering: Principles</i> , Vol.1 (Institute of Physics, Bristol, 1995).
[Котн 97]	M. ROTH, T. HAAS, M. LOCK, KH. GERICKE, A. BRÄUNING-DEMIAN, L. SPIELBERGER, H. SCHMIDT-BÖCKING, "Micro-Structure Electrodes as Electronic Interface between Solid and Gas Phase: Electrically Steerable Catalysts for Chemical Reactions in the Gas Phase", First International Conference on Microreaction Technology, 23.–25. Februar 1997, Frankfurt/M.; erschienen in: W. Ehrfeld (Editor), <i>Microreaction Technology</i> , (Springer, Heidelberg, 1998), 61ff.
[RUTSCHER 84]	A. RUTSCHER, H. DEUTSCH, <i>Plasmatechnik</i> (Carl Hanser, München Wien, 1984).
[SAMOILOVICH 97]	V. G. SAMOILOVICH, <i>Physical chemistry of the barrier discharge</i> (DVS, Düsseldorf, 1997).
[Sawada 95]	Y. SAWADA, S. OGAWA, M. KOGOMA J. Phys. D: Appl. Phys. 28, 1661–1669 (1995).
[SCHLEMM 99]	H. SCHLEMM, Jena, Persönliche Mitteilung, 1999.
[Schoenbach 96]	K. H. SCHOENBACH, R. VERHAPPEN, T. TESSNOW, F. E. PETERKIN, W. W. BYSZEWSKI, "Microhollow cathode discharges", Appl. Phys. Lett. 68 , 13–15 (1996).
[Schoenbach 97]	K. H. SCHOENBACH, A. EL-HABACHI, W. SHI and M. CIOCCA, "High- pressure hollow cathode discharges", Plasma Sources Sci. Technol. 6 , 468–477 (1997).
[Sobel 91]	A. SOBEL, "Plasma Displays", IEEE Trans. Plasma Sci. 19 , 1032–1047 (1991).
[Stark 99 A]	R. H. STARK and K. H. SCHOENBACH, "Direct current high-pressure glow discharges", J. Appl. Phys. 85 , 2075–2080 (1999).
[Stark 99B]	R. H. STARK and K. H. SCHOENBACH, "Direct current glow discharges in atmospheric air", Appl. Phys. Lett. 74 , 3770–3772 (1999).
[Stolz 95]	A. STOLZ, "Entwicklung eines zweidimensional ortsempfindlichen Mikrostreifen-Gaszählers", Diplomarbeit, TU München (1995).
[SUEHIRO 98]	J. SUEHIRO and R. PETHIG, "The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system", J. Phys. D: Appl. Phys. 31 , 3298–3305 (1998).

[Trunec 98]	D. TRUNEC, A. BRABLEC, F. STASTNY, HAKONE VI, International Symposium on High Pressure Low Temperature Plasma Chemistry, Cork, Ireland, 1998, Contributed Papers, Vol. 2, 313– 317.
[Үокоуама 90]	T. YOKOYAMA, M. KOGOMA, T. MORIWAKI, and S. OKAZAKI, "The mechanism of the stabilisation of glow plasma at atmospheric pressure", J. Phys. D: Appl. Phys. 23 , 1125–1128 (1990).

Anhang

A.1 Liste der verwendeten Abkürzungen

AC	Wechselstrom (engl. Alternating Current)
amu	atomare Masseneinheit (engl. atomar mass unit)
BTX	Benzol, Toluol, Xylol
CAD	engl. Computer-Aided Design
DC	Gleichstrom (engl. Direct Current)
DeNO _x	Zersetzung von Stickoxiden (NO _x)
HF	hochfrequente Wechselspannung, Hochfrequenz (3–30 MHz)
HV	Hochspannung (engl. High Voltage)
ICCD	engl. Intensified Charge Coupled Device
IMT	Institut für Mikrotechnik der TU Braunschweig
LIF	Laserinduzierte Fluoreszenzspektroskopie
MSE	Mikrostrukturiertes Elektrodensystem
MFC	Gasflussregler (engl. Mass Flow Controller)
MID	engl. Multiple Ion Detection (ein Modus des Massenspektrometers)
MZD	Photronics MZD GmbH, Dresden
OES	optische Emissionsspektroskopie
PMT	Photomultiplier (<i>engl.</i> Photomultiplier Tube)
PTFE	Polytetrafluorethylen (Teflon [®])
QMS	Quadrupolmassenspektrometrie, -spektrometer
RBO	Robert Bosch GmbH, Stuttgart
REM	Rasterelekronenmikroskopie
RH	Radeberger Hybridelektronik GmbH, Radeberg
sccm	Gasfluss in cm ³ /min bei Standardbedingungen
	("Standardkubikzentimeter")
SHG	Frequenzverdopplungseinheit (engl. Second Harmonic Generator)

A.2 Abbildungsverzeichnis

Abb.	1-1	Schematische Darstellung der MSE (MSE)	3
ADD.	1-2	tischen Methoden sowie potenzielle Anwendungsbereiche	4
Abb.	2-1	Entladungsgeometrien für Barriereentladungen	7
ADD.	2-2	gemäß der Ähnlichkeitsbeziehung pd = konstant	.10
Abb.	3-1	Experimenteller Aufbau Plasmareaktor mit Gasversorgung	.13
ADD.	3-2	reaktor für den Betrieb mit Gleichspannung	15
Abb.	3-3	Halterung zum Einbau von MSE in den Experimental-	. 10
		reaktor für den Betrieb mit hochfrequenter Wechselspannung (13,56 MHz)	.17
Abb.	3-4	Modul zur Durchführung quantitativer Messungen mit MSE	.18
Abb.	3-5	Elektrische Versorgung Gleichspannung	.21
Abb.	3-6	Elektrische Versorgung hochtrequente Wechselspannung (13,56 MHz)	.23
Abb.	3-7	Experimenteller Aufbau für die Detektion von NO mittels laserinduzierter	26
Δhh	3-8	Experimenteller Aufhau ontische Emissionssnektroskonie (OES)	.20 28
Abb.	3-9	Experimenteller Aufbau Quadrupolmassenspektrometrie (QMS)	.20
7.00.	00		.00
Abb.	4.1-1	Basisgeometrie der MSE (CAD-Zeichnung)	.32
Abb.	4.1.1-1	Prinzip der Entkopplung von Elektroden	.34
Abb.	4.1.2-1	Schematische Darstellung des Aufbaus aus MSE und Gitterelektrode	.35
Abb.	4.1.2-2	Zündbedingungen für den Aufbau aus Kupfer – Platte und Gitter	.37
Abb.	4.1.2-3	U/I - Charakteristiken für den Betrieb mit Kupfer - Platteelektrode und Gitter	.38
Abb.	4.1.2-4	Abhängigkeit des Betriebsdruckes vom Abstand zwischen Kupfer –	
	4 4 0 5	Plattenelektrode und Gitter	.39
Abb.	4.1.2-5	Abhangigkeit des Betriebsdruckes vom Gittermaterial	.40
ADD.	4.1.2-6	Abnangigkeit des Betriebsdruckes vom Gittertyp	.40
ADD.	4.1.1-1	Experimenteller Aufbau zum Betrieb im KHz-Bereich	.42
ADD.	4.1.3-2	am Euristionsgenerator	13
۸hh	1122	Spannungsverlauf einer bei 0.55 kHz betriebenen He. Entladung	.43
Δhh	4 1 4 1	Elektrodenvarianten für den Betrieb mit Hochfrequenz (13 56 MHz)	. 44 45
Abb.	4 2-1	Herstellungsprozess MSF	.40
Abb	4 3-1	Typ I -RH Mikroelektroden-Array (Foto)	53
Abb.	4.3-2	Typ M-RBO MSE (Foto)	.54
Abb.	4.3-3	4 ^{''} -Glassubstrat mit 36 MSE vom Tvp S-RBO (Foto)	.57
Abb.	4.3-4	Typ M-IMT Mikroelektroden-Array (Foto)	.58
Abb.	4.3-5	Typ S-IMT Mikroelektroden-Array (Foto)	.58
Abb.	5-1	Strom-Spannungs-Charakteristik einer Heliumentladung bei	. .
			.61
Abb.	5-2	NO-LIF-Spektrum ($A^{2}\Sigma^{*}$ (v'= 0) $\leftarrow X^{2}\Pi_{1/2}$ (v''= 0)-Ubergang)	~~
		onne Gasentiadung	.63
Abb.	5-3	NO-LIF-Spektrum (A^{Σ} (v'= 0) $\leftarrow X^{2}\Pi_{1/2}$ (v''= 0)-Ubergang)	~~
		mit Gasentiadung	.63

Abb.	5-4	BOLTZMANN-Plot für den R₁-Zweig der (0–0)-Bande	
		des $A^2\Sigma^+ \leftarrow X^2\Pi_{1/2}$ -Übergangs im NO (in Helium)	64
Abb.	5-5	BOLTZMANN-Plot für den R ₁ -Zweig der (0–0)-Bande	
		des $A^2\Sigma^+ \leftarrow X^2\Pi_{1/2}$ -Übergangs im NO (in Helium/Argon)	65
Abb.	5-6	Lichtmikroskopaufnahmen von Typ L-MZD MSE nach längerem	
		Plasmabetrieb in Edelgasen	66
Abb.	5-7	Lichtmikroskopaufnahmen von MSE des Typs L-RH	67
Abb.	5-8	Strom-Spannungs-Charakteristik von Heliumentladungen (p = 4 mbar)	69
Abb.	5-9	REM-Aufnahmen von MSE des Typs M-RBO	71
Abb.	5-10	Mit MSE F1–F4 und H1–H4 vom Typ S-RBO realisierte Betriebsdrücke	76
Abb.	5-11	Mit MSE der Serien B, D und L vom Typ S-RBO realisierte Betriebsdrücke	78
Abb.	5-12	Strom-Spannungs-Charakteristik von Entladungen in Helium, Neon, Argon	
		und Stickstoff bei einem Gasdruck von 10 mbar. – MSE Typ S-RBO-C1	80
Abb.	5-13	Strom-Spannungs-Charakteristik von Entladungen in Helium, Neon, Argon	
		und Stickstoff bei einem Gasdruck von 10 mbar. – MSE Typ S-RBO-L1	81
Abb.	5-14	Strom-Spannungs-Charakteristik von Entladungen in Helium, Neon und	
		Argon bei einem Gasdruck von 25 mbar. – MSE Typ S-RBO-L1	82
Abb.	5.15	Hochfrequenzentladung (25 mm $ imes$ 30 mm) in Helium/500 ppm NO	
		bei 990 mbar als Funktion von der HF-Leistungsdichte (Fotos)	85
Abb.	5-16	Hochfrequenzentladung (13,56 MHz) in Helium/500 ppm NO	
		bei 240 mbar als Funktion von der HF-Leistungsdichte (Fotos)	86
Abb.	5-17	Erzeugung von Hochfrequenzentladungen (13,56 MHz) mit Typ S-IMT	
		MSE (Foto).	87
Abb.	5-18	Zerstörtes Typ S-IMT MSE nach dem Betrieb einer N ₂ -Entladung (Foto)	88
Abb.	5-20	Parasitäre Hochfrequenzentladung (13,56 MHz) in Helium bei 300 mbar	89
Abb.	5-21	Abbau von NO _x als Funktion der HF-Leistungsdichte	91
Abb.	5-22	Abbau von NO als Funktion der HF-Leistungsdichte (lineare Darstellung)	92
Abb.	5-23	Abbau von NO als Funktion der HF-Leistungsdichte	92
Abb.	5-24	Abbau von NO als Funktion der HF-Leistungsdichte bei niedrigen	~ 4
A I. I.	F 0F	Gasdurchflussraten	94
ADD.	5-25	Abbau von NO bei mittleren Gasdurchtiussraten in Argon	95
ADD.	5-26	Autoau von NO bei kleinen Gasdurchtlussraten in Argon	96
ADD.	5-27	OES-Spektrum einer Hellumentladung bei 420 mbar	97
ADD.	5-28	UES-Spektrum einer Entiadung in einem Gasgemisch aus	~~
A I. I.	F 00	Relium und 2,3 vol.% Stickston bei 660 mbar	98
ADD.	5-29	γ-Banden des NO im Weilenlangenbereich von 210–280 nm	99
ADD.	5.30	OES-Spektren von Gasentladungen in Stickston und	100
1 h h	E 21	Slickstoff + 5 Vol.% Tetrafluormetrialii (Cr_4)	100
ADD.	5-51	DES-Spektren von Gasentladungen in Stickston + 5 vol.% Tetranuor-	101
۸hh	E 22	Internation (CF_4) dis Furiktion der HF-Leislungsdichte	101
ADD.	0-3Z	$N_{2} = 0.000$ $N_{2} = 0.00$	
		Volt Gasenilauungen in Suckston + 5 Vol. $\%$ Tetranuormethan (CF ₄) als	102
۸hh	F 33	Schwingungsamplitude der Jopen in einem Stickstoffplasma in Abhängig	102
ADD.	0-00	koit vom Druck boi droi unterschiedlichen Frequenzen	116
۸hh	E 21	Schwingungsamplitude der Jopen in einem Stickstoffplasma bei 1000 mbar	110
ADD.	0-34	in Abhängigkeit von der Frequenz	117
۸hh	5 35	MSE in Mohrfachanordhung (Ecto)	120
ADD.	0-00		120
Abb	6-1	Zeitlich gemittelter Spannungsverlauf in einer HF-Entladung	125
Abb	6.1-1	Schematisierte Darstellung des Aufbaus zur Beschichtung von Substra	aten
		mittels MSE-Plasma	126
Abb.	6.1-2	C-Schicht, abgeschieden aus einer Gasmischung von 2 Vol.% Acetvler	n in
	-	Helium bei einem Betriebsdruck von 10 mbar.	127

Abb. 6.1-3	Kratzspur in einer C-Schicht auf einem Silicium-Substrat.	130
Abb. 6.2-1	Abbau des Methans	131
Abb. 6.2-2	Produktbildung in einer Entladung in einem Gasgemisch aus 5 Vol%	400
	Methan in Helium bei 100 mbar und einem Gastluß von 100 sccm.	
Abb. 6.2-3	Produktbildung in einer Entladung in einem Gasgemisch aus 5 Vol%	
	Methan in Helium bei 100 mbar und einem Gasfluß von 100 sccm	133
Abb. 6.2-4	Konzentrationsverlauf einiger Spezies in einem Gemisch aus 2 Vol%	
	Acetylen in Helium bei 100 mbar und einem Gasfluß von 100 sccm	134
Abb. 6.2-5	Produktbildung in der Entladung in einem Gasgemisch von 2 Vol%	
	Acetylen in Helium	135
	•	

A.3 Tabellenverzeichnis

Tab.	3-1	Verwendete Gase	.20
Tab.	3-2	Verwendete Prüfgasgemische	.20
Tah	1 1 2_1	Fingesetzte Gittertunen	36
Tab.	4.2-1	Elektrische und thermische Eigenschaften von Metallen, die zur	.50
		Herstellung von MSE verwendet wurden	.47
Tab.	4.2-2	Elektrische und thermische Eigenschaften der für die Fertigung	
		von MSE eingesetzten Trägermaterialien	.48
Tab.	4.3-1	Klassifizierung der MSE nach Substratgröße	.52
Tab.	4.3-2	Zusammenstellung der geometrischen Parameter der Typ L-MZD MSE	.53
Tab.	4.3-3	Zusammenstellung der geometrischen Parameter der Typ L-RH MSE	.54
Tab.	4.3-4	Zusammenstellung der geometrischen Parameter der Typ M-RBO MSE	.55
l ab.	4.3-5	Zusammenstellung der geometrischen Parameter der Typ S-RBO MSE	.56
Tab.	5-1	Zusammenstellung einiger Betriebsparameter der Typ M-RBO MSE	.72
Tab.	5-2	Zusammenstellung der Druckgrenzen sowie der entsprechenden	
		Betriebsspannungen für MSE vom Typ S-RBO (Wafer I)	.74
Tab.	5-3	Zusammenstellung der Druckgrenzen sowie der entsprechenden	
		Betriebsspannungen für MSE vom Typ S-RBO (Wafer II)	.77
Tab.	5-4	Zusammenstellung der Zündspannungen sowie der Brennspannungen für	
		Entladungen in verschiedenen Gasen (MSE C1 und L1 vom Typ S-RBO)	.82
Tab.	5-5	Abbau von NO _x mit MSE vom Typ M-IMT in Abhängigkeit von	~ ~
- .		der eingekoppelten HF-Leistungsdichte	.93
Tab.	5-6	Im DC-Betrieb untersuchte MSE (Zusammenstellung)	104
Tab.	6-1	Typische Beschichtungsprozesse	124
Tab.	6.1-1	Beschichtungsexperimente mit einer Gasmischung von 5 Vol% Methan in	
		Helium	128
Tab.	6.1-2	Beschichtungsexperimente mit einer Gasmischung von 2 Vol% Acethylen in	
	• • -	Helium	128
Tab.	6.1-3	Autlistung der in den Beschichtungsprozessen eingesetzten MSE	129