Institut für Physikalische und Theoretische Chemie

TU-Braunschweig


11. Übungsblatt zur Vorlesung Physikalische Chemie I - Thermodynamik, Kinetik -

Sommersemester 2006

Prof. Dr. K.-H. Gericke, Dipl. Chem. Jan Frähmcke, Dipl. Chem. Sebastian Kauczok

Mischungen, Transportprozesse, Leitfähigkeit

- 1) Die Theorie der Diffusion ist sehr stark mit der kinetischen Gastheorie verbunden. Beschreiben Sie die Temperatur- und Druckabhängigkeit folgender Koeffizienten unter der Annahme eines idealen Gases und berechnen sie die Werte für He und N_2 bei 298 K und 10^5 Pa (mit der "einfachen Rechnung")
- a) Diffusionskoeffizient D
- b) Wärmeleitfähigkeitskoeffizient κ
- c) Viskositätskoeffizient η
- (Molekulare Stoßquerschnitte und Wärmekapazitäten sind im Skript tabelliert)
- 2) Als Belohnung für das fast gewonnene Halbfinale gegen Italien erlaubt Klinsi jedem Spieler 0,2 L eines alkoholischen Getränkes. Dazu mischt er 60 mL Ethanol ($\rho(EtOH) = 0,79 \text{ g/cm}^3$) mit 140 mL Wasser ($\rho(H_2O) = 1 \text{ g/cm}^3$).
- a) Wieviele mL bekommen die Spieler tatsächlich?
- b) Welche Volumina hätte Klinsi mischen müssen, um genau 0,2 L bei gleichem Alkoholmassenanteil zu erhalten
- c) Wer wird Weltmeister?

3) Die molare Leitfähigkeit einer 0,025 M Ameisensäure-Lösung beträgt 4,61 10^{-3} Sm²/mol. Wie groß ist der Dissoziationsgrad α ? Wie groß ist die Säurekonstante K_s ? $(\Lambda_m(HCO_2^-) = 5,46 \text{ Sm}^2/\text{mol}; \Lambda_m(H^+) = 34,98 \text{ Sm}^2/\text{mol})$