PC I Thermodynamik und Transportprozesse

Kapitel 4

Chemische und Physikalische Umwandlungen

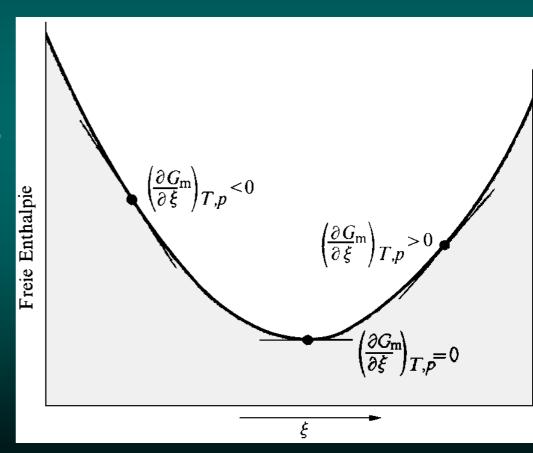
Das chemische Gleichgewicht: Minimum der Freien Enthalpie

Reaktionslaufzahl: ξ für Reaktion: $A \rightarrow B$

Änderung der Menge an $A = - d\xi$ Änderung der Menge an $B = + d\xi$

Kriterium $(dG)_{T,p} \le 0$ bedeutet für die Chemie, dass bei konstantem Druck und konstanter Temperatur Reaktionen freiwillig ablaufen, wenn dabei die Freie Enthalpie abnimmt:

$$\Delta G = G_{Produkte} - G_{Edukte}$$



Das chemische Gleichgewicht: Chemisches Potential

Veränderung der Funktion G(p,T,n₁,n₂, ...):

$$dG = (\partial^G/_{\partial p})_{T,n_1,n_2..}dp + (\partial^G/_{\partial T})_{p,n_1,n_2..}dT + (\partial^G/_{\partial n_1})_{p,T,n_2..}dn_1 + (\partial^G/_{\partial n_2})_{p,T,n_1..}dn_2...$$

n₁, n₂, ... sind die Molzahlen der beteiligten Substanzen.

$$(\partial G/\partial p)_{T,n_1,n_2..} = V$$
 $(\partial G/\partial T)_{p,n_1,n_2..} = -S$

chemisches Potential
$$\mu_1 = (\partial G/\partial n_1)_{p,T,n_2...}$$

Der Name ist analog zur Mechanik gewählt, wo sich Körper zum Minimum eines Potentials bewegen. Thermodynamische Systeme streben ins Minimum der freien Enthalpie.

$$\begin{split} dG &= Vdp - SdT + \mu_{1}dn_{1} + \mu_{2}dn_{2} + ... \\ dG_{p,T} &= \mu_{A}dn_{A} + \mu_{B}dn_{B} = -\mu_{A}d\xi + \mu_{B}d\xi \\ & (\partial^{G}/\partial_{\xi})_{p,T} = \mu_{B} - \mu_{A} \end{split}$$

Das chemische Gleichgewicht: Chemisches Potential

$$(\partial^{\mathsf{G}}/_{\partial\xi})_{\mathsf{p},\mathsf{T}} = \mu_{\mathsf{B}} - \mu_{\mathsf{A}}$$

Für $\mu_A > \mu_B$ läuft die Reaktion in der Richtung A \rightarrow B;

für μ_B > μ_A läuft die Reaktion in der Richtung A ← B;

für $\mu_A = \mu_B$ erreicht die Reaktion ihr Gleichgewicht.

 $\Delta_{\mathbf{r}}\mathbf{G} = (\partial_{\mathbb{C}}\mathbf{I}_{\partial \mathcal{E}})_{\mathsf{T.p}}$ Freie Reaktionsenthalpie oder Gibbssche Reaktionsenergie

$$|v_{A}|A + |v_{B}|B \rightarrow |v_{C}|C + |v_{D}|D$$

$$dn_{J} = v_{J}d\xi$$

$$dG = (\Sigma_{J}v_{J}\mu_{J}) d\xi$$

$$\Delta_{r}G = \Sigma_{J}v_{J}\mu_{J}$$

Reaktionen mit $\Delta_r G < 0$ nennt man *exergonisch*; sie laufen spontan ab. Reaktionen mit $\Delta_r G > 0$ heißen *endergonisch*. Spontan würden sie in der Gegenrichtung ablaufen.

Für eine Reaktion im Gleichgewicht ist $\Delta_r G = 0$.

Gleichgewichtskonstante bei idealen Gasen

Freie Enthalpie bei Druck p:
$$G(p) = G(p^{\circ}) + nRT \ln(p/p^{\circ})$$
 Standarddruck p°

$$\mu = \mu^{\circ} + RT \ln(p/p^{\circ})$$

$$\Delta_{r}G = \mu_{B} - \mu_{A} = \{\mu_{B}^{\circ} + RT \ln(p_{B}/p_{p^{\circ}})\} - \{\mu_{A}^{\circ} + RT \ln(p_{A}/p_{p^{\circ}})\}$$

$$\Delta_r G = \Delta_r G^\circ + RT \ln(p_B/p_A)$$

Gleichgewicht: $\Delta_r G = 0$, mit Gleichgewichtskonstante $K = {}^{p_B}I_{p_A}$

RT In
$$K = -\Delta_r G^\circ$$

$$K = exp[-\Delta_r G^{\circ}/_{RT}]$$

Gleichgewichtskonstante bei idealen Gasen

Für beliebige Reaktion
$$|v_A|A + |v_B|B \rightarrow |v_C|C + |v_D|D$$

$$\Delta_{r}G = \Delta_{r}G^{\circ} + RT \ln [(p_{C}/p^{\circ})^{\vee_{C}}(p_{D}/p^{\circ})^{\vee_{D}}]/[(p_{A}/p^{\circ})^{|\vee_{A}|}(p_{B}/p^{\circ})^{|\vee_{B}|}]$$

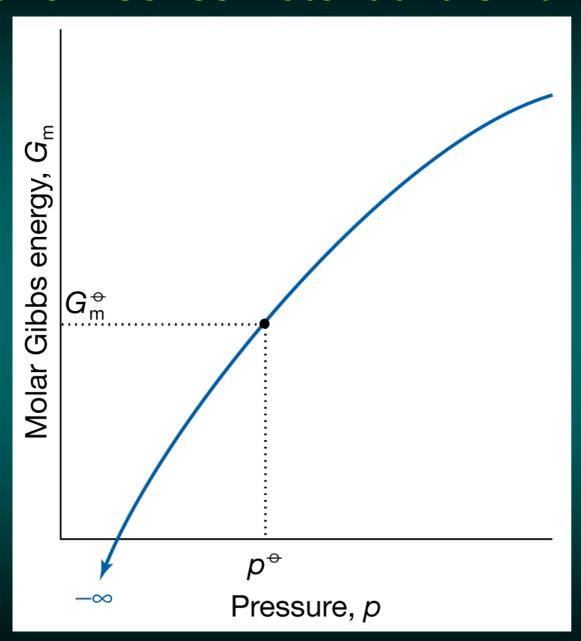
$$\Delta_{r}G^{\circ} = \Sigma_{J} \nu_{J} \Delta_{b}G_{J}^{\circ}$$

Im Gleichgewicht ist
$$\Delta_r G = 0 \Rightarrow K = \prod_J (p_J/p_o)^{V_J}_{GI.}$$

RT
$$\ln K = -\Delta_r G^\circ$$

RT
$$\ln K = -\sum_{J} v_{J} \Delta_{b} G_{J}^{\circ}$$

Chemisches Potential als Funktion des Drucks



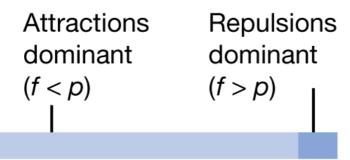
bei idealen Gasen

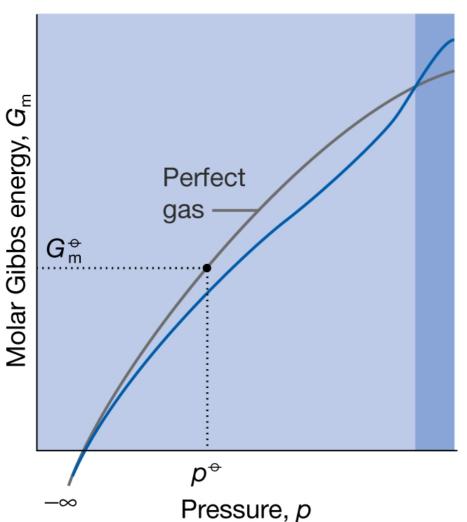
Das chemische Potential µ entspricht der Molaren Freien Enthalpie G_m:

$$G(p) = G(p^{\circ}) + nRT \ln(p/p^{\circ})$$

$$G_m(p) = G_m(p^{\circ}) + RT \ln(p/p^{\circ})$$

$$\mu = \mu^{\circ} + RT \ln(p/p^{\circ})$$





Chemisches Potential (µ = G_m) als Funktion des Drucks

bei realen und idealen Gasen

Fugazität und Gleichgewichtskonstante bei realen Gasen

Partialdrücke p_. werden durch *effektive* Drücke (*Fugazitäten)* ersetzt:

$$\mu = \mu^{\circ} + RT \ln^{f}/_{p^{\circ}}$$

Fugazitätskoeffizienten φ:

$$f = \phi \cdot p$$

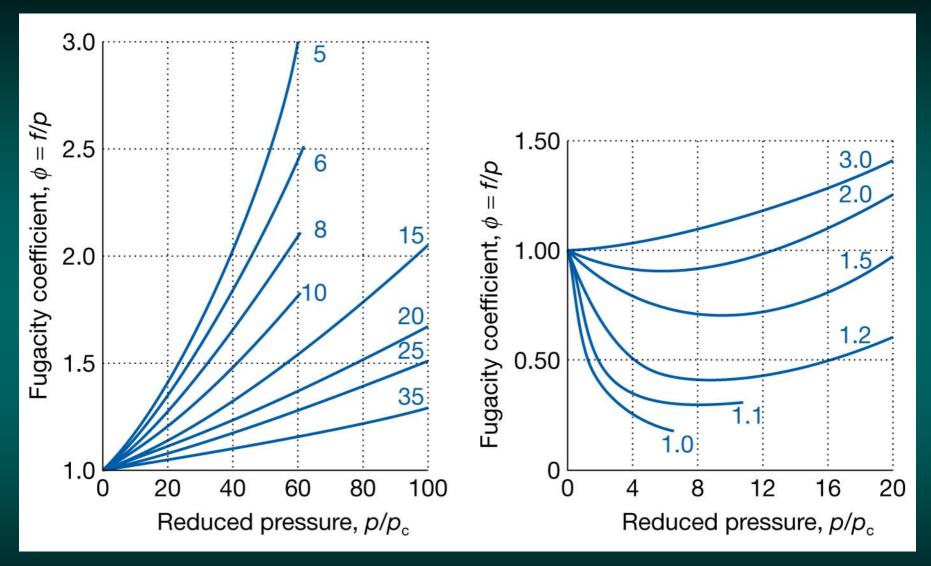
$$\Delta_{r}G^{\circ} = -RT \ln K,$$

$$K = \prod_{J} (f_{J}/p_{\circ})^{VJ}$$

mit Kompressionsfaktor Z:

$$\ln \phi = \int_{0}^{p} (Z - 1)/p \, dp$$

Fugazitätskoffizient eines van-der-Waals-Gases



Die reduzierten Variablen sind über die van-der-Waals Parameter leicht zu berechnen (s. Kap. I, van-der-Waals). Die blauen Kurven gelten für die angegebenen reduzierten Temperaturen. 13.06.2006 16:37

PC I-Kap.4

Aktivität und Gleichgewichtskonstante in Lösungen

Molenbruch $x_J = p_J/P$ (mit P als Gesamtdruck)

 \Rightarrow μ = μ° + RT ln(x_JP/p°). Beziehen wir das Bezugspotential μ° auf den aktuellen Gesamtdruck P der Mischung, dann gilt (P = p°; μ° = μ(P)):

$$\mu_J = \mu_J^{\circ} + RT \ln x_J$$

Mit korrigiertem Konzentrationsmaß, der Aktivität a,:

$$\mu_J = \mu_{J}^{\circ} + RT \ln a_{J}$$

Aktivitätskoeffizienten γ:

$$\mathbf{a}_{J} = \gamma_{J} \mathbf{x}_{J}$$
.

Im Gleichgewicht ($\Delta_r G = 0$): $\Delta_r G^\circ = -RT \ln K$, $K = {\prod_j a_j v_j}_{GI}$

$$\mathbf{K} = \{a_{\mathrm{C}}a_{\mathrm{D}}/a_{\mathrm{A}}a_{\mathrm{B}}\}_{\mathrm{GI}} = \{\gamma_{\mathrm{C}}\gamma_{\mathrm{D}}/\gamma_{\mathrm{A}}\gamma_{\mathrm{B}}\}\{\mathbf{m}_{\mathrm{C}}\mathbf{m}_{\mathrm{D}}/\gamma_{\mathrm{m}_{\mathrm{A}}\mathbf{m}_{\mathrm{B}}}\}_{\mathrm{GI}} = \mathbf{K}_{\gamma}\mathbf{K}_{\mathrm{m}}$$

Kontrolle des chemischen Gleichgewichts

Prinzip von Le Chatelier (Prinzip des kleinsten Zwanges):

Übt man auf ein System im Gleichgewicht eine Störung aus, reagiert das System so, dass die Wirkung dieser Störung möglichst gering ist.

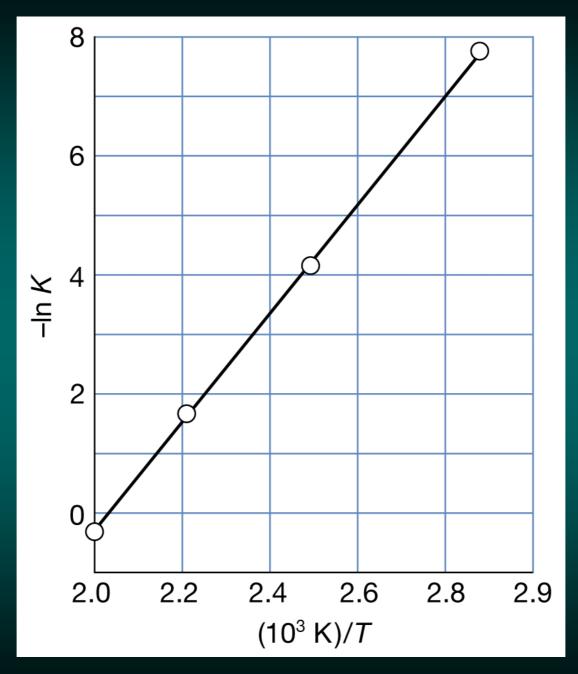
1. Einfluss des Druckes auf das Gleichgewicht: $(\partial^{\mathsf{K}}I_{\partial \mathsf{p}})_{\mathsf{T}} = 0$

Trotz der Temperaturunabhängigkeit von K können sich die Gleichgewichtsdrücke ändern, wg. nichtlinearer Zusammenhänge: $\mathbf{K} = \Pi_{\mathbf{J}}(\mathbf{p}_{\mathbf{J}}/\mathbf{p}_{\mathbf{p}})^{\mathbf{v}_{\mathbf{J}}}$

2. Einfluss der Temperatur auf das Gleichgewicht

Exotherme Reaktion: Eine Temperaturerhöhung verschiebt das Gleichgewicht zugunsten der Edukte.

Endotherme Reaktion: Eine Temperaturerhöhung verschiebt das Gleichgewicht zugunsten der Produkte.



Säuren und Basen

Säure HA als Protonendonator

$$HA \rightarrow H^+ + A^-$$

Base B als Protonenakzeptor

$$B + H^{+} \rightarrow HB^{+}$$

Gleichgewichtsreaktion der Säure HA in wässriger Lösung

$$HA(aq) + H2O(I) \leftrightarrow H3O+(aq) + A-(aq)$$

Gleichgewichtskonstante

$$K = a(H_3O^+) a(A^-) I a(HA) a(H_2O)$$

Für verdünnte Lösungen ist Aktivität a(H₂O) ≈ 1:

$$K_S = a(H_3O^+) a(A^-)/a(HA)$$

Säurekonstante K_s

Säuren und Basen

Gleichgewichtsreaktion der Base B in wässriger Lösung

$$B(aq) + H_2O(I) \leftrightarrow HB^+(aq) + OH^-(aq)$$

oder mit konjugierter/korrespondierender Säure formuliert

$$HB^+(aq) + H_2O \leftrightarrow B(aq) + H_3O^+(aq)$$

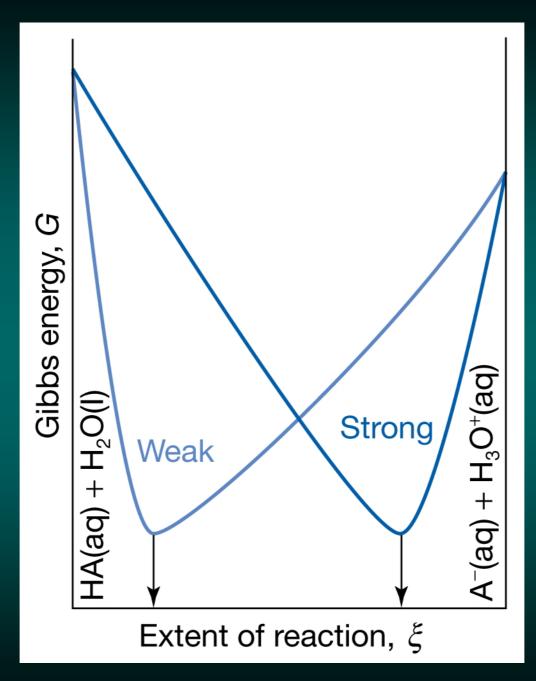
Brønsted und Lowrys Formulierung des Säure-Base-Gleichgewichts:

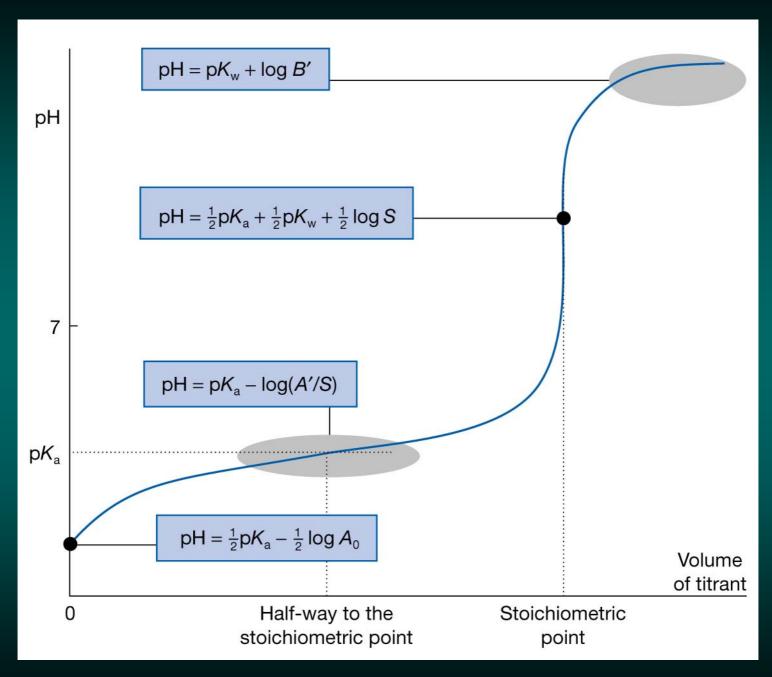
Säure(aq) +
$$H_2O(I) \leftrightarrow H_3O^+(aq)$$
 + Base(aq)

$$K_S = a(H_3O^+) \frac{a(Base)}{a(S\"{a}ure)}$$

p $K_S = -lg K_S$

$$\Delta_R G^\circ = -RT \ln K_S = 2,303 RT. pK_S$$





Autoprotolyse und pH-Wert

Zwischen zwei Wassermoleküle kann es zum Protonentransfer kommen, wobei eines als Säure, das andere als Base fungiert:

$$H_2O(I) + H_2O(I) \rightarrow H_3O^+(aq) + OH^-(aq)$$

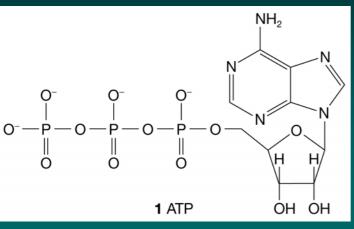
Beschreibung als Autoprotolyse mit Gleichgewichtskonstante K_w:

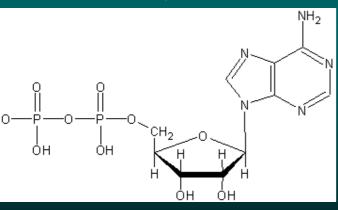
$$K_W = a(H_3O^+) a(OH^-)$$
; $pK_W = - lg K_W$
 $K_W = 1,008 \ 10^{-14}$
 $a(H_3O^+) \approx a(OH^-) \approx K_W^{\frac{1}{2}} = 1,004 \ x \ 10^{-7}$
 $pH = - lg \ a(H_3O^+)$; $pOH = - lg \ a(OH^-)$; $pK_W = pH + pOH$

Für reines Wasser gilt

pH = pOH; pH
$$\approx \frac{1}{2}$$
 pK_W = 7,00

Thermodynamik des ATP in biologischen Prozessen





ADP

Die Wirkung des ATP beruht auf der hydrolytischen Abspaltung der terminalen Phosphatgruppe, was zu ADP führt.

Eine Reaktionsgleichung kann wie folgt lauten:

ATP + Enzym + Substrat → Enzym + Produkt + ADP

Das Substrat wird phosphoryliert, d.h. Substrat und Phosphat verbinden sich zu einem Molekül. Das Produkt ist "energiereicher" als das Substrat.

$$\Delta_r G^{\emptyset} = -30 \text{ kJ/mol}; \Delta_r H^{\emptyset} = -20 \text{ kJ/mol}; \Delta_r S^{\emptyset} = +34 \text{ J/Kmol}$$

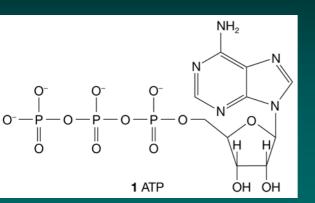
Das "energiearme" ADP wird durch energieliefernde Reaktionen im Körper wieder zum "energiereichen" ATP phosphoryliert.

Atkins:

 $ATP(aq)+H_2O(I) \rightarrow ADP(aq)+P_a^{-1}(aq)H_3O^{+1}(aq)$

13.06.2006 16:37 PC I-Kap.4

Thermodynamik des ATP in biologischen Prozessen



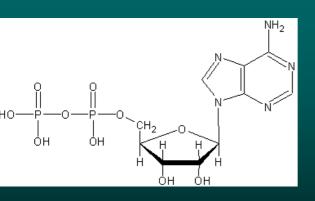
Die Energiequelle *anaerober Prozesse* ist die Glycolyse - partielle Oxidation zur Milchsäure (Lactose)

$$\Delta_{\rm r} G^{\varnothing}(37^{\circ}{\rm C}) = -218 \text{ kJ/mol}$$

$$\Delta_r G^{\emptyset}(37^{\circ}C) = -218 \text{ kJ/mol} - 2(-30 \text{ kJ/mol vom ADP})$$

= -158 kJ/mol (exergonisch; 2ADP \rightarrow 2ATP)

Bei der *aeroben* Verbrennung wird die Glucose vollständig oxidiert – für jedes verbrauchte Glucosemolekül werden 38 ATP gebildet.



Damit stehen 38*30 kJ/mol = 1140 kJ/mol (1140 kJ/ 180g Glucose) zur Verfügung.

Zur Synthese eines mittelgroßen Proteins braucht man ca. 500 ATP oder 13mol Glucose.

(Verbrennungsenthalpie von Glucose: 2880 kJ/mol)

ADP

Standardzustand für biologische Prozesse

Der Standardzustand (Symbol °) für H-Ionen (a(H+) = 1, pH=0) ist auf biologische Bedingungen nicht anwendbar.

Biologischer Standardzustand: pH=7, a(H⁺) =10⁻⁷ (Symbol ^Ø bei Atkins: [⊕])

Umrechnung: $\Delta_r G^{\emptyset} = \Delta_r G^{\circ} + 7*In10 \text{ vRT} = \Delta_r G^{\circ} + 16,12 \text{ vRT}$

für allgem. Reaktion Edukte + $vH^+(aq) \rightarrow Produkte$

 $\Delta_r G = \mu(Produkte) - \mu(Edukte) - \nu \mu(H^+) = \mu^{\circ}(Produkte) - \mu^{\circ}(Edukte) - \nu \mu(H^+)$

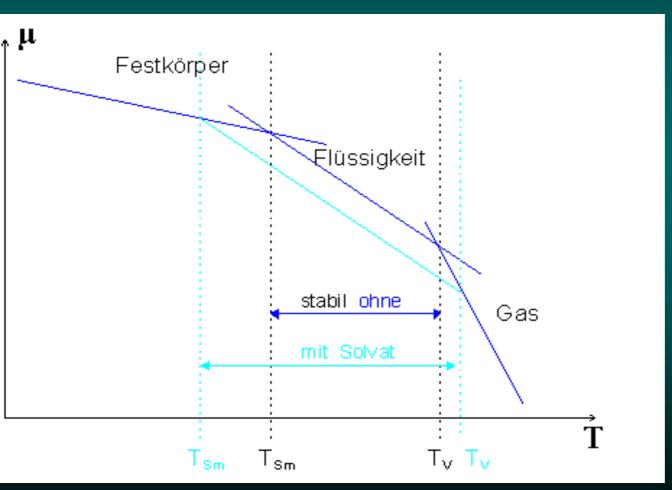
 $\mu(H^+) = \mu^{\circ}(H^+) + RT \ln a(H^+) = \mu^{\circ}(H^+) - \ln 10 RT \times pH$

woraus sofort die obige Umrechnung folgt

Feste, flüssige und gasförmige Phase

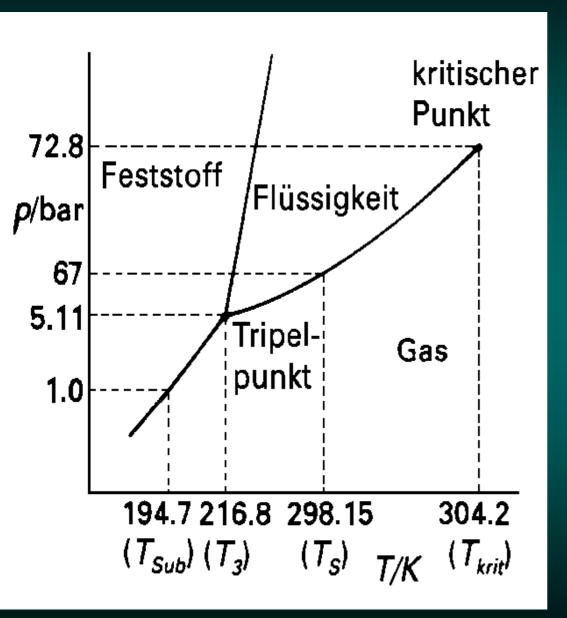
Temperaturabhängigkeit und Stabilität von Phasen:

 $({}^{\partial G}/_{dT})_p = -S$; bezogen auf ein Mol: $({}^{\partial G_m}/_{dT})_p = -S_m \Rightarrow ({}^{\partial \mu}/_{dT})_p = -S_m$ d.h. das chemische Potential eines Stoffes sinkt mit steigender Temperatur.

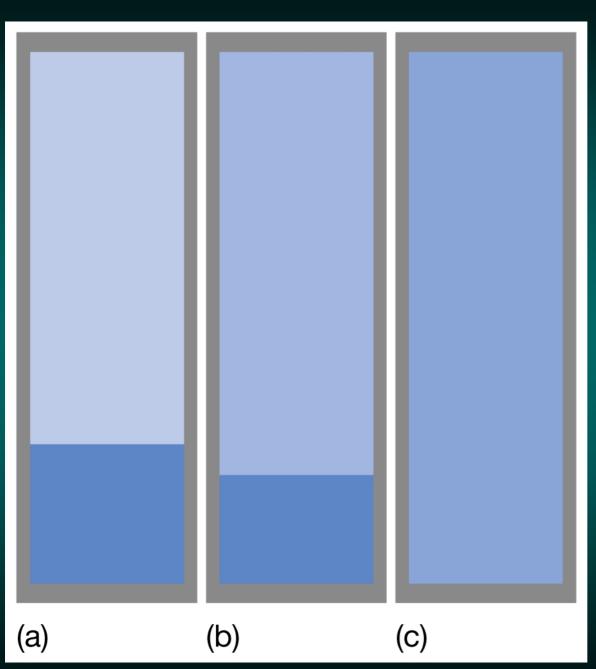


Chemisches Potential µ für drei Phasen.
Da die Entropie S jeweils von fest nach flüssig nach gasförmig zunimmt, nimmt auch die negative Steigung von µ entsprechend zu.

Phasendiagramm (von CO₂)

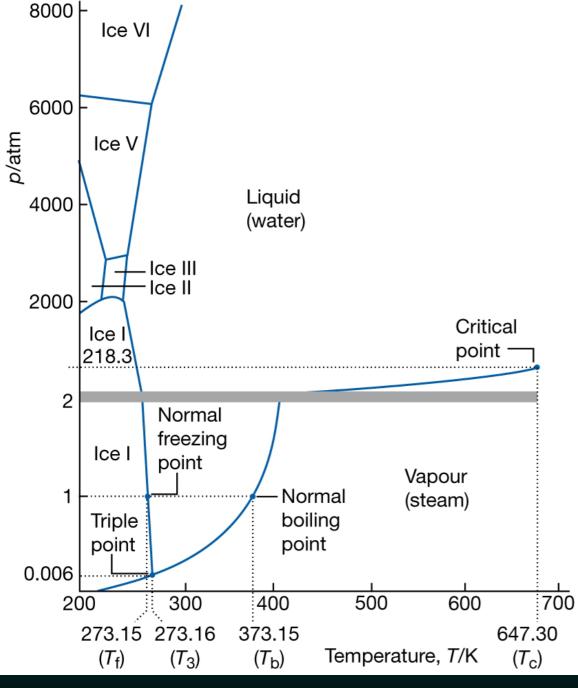


Das experimentell bestimmte Phasendiagramm (hier von Kohlendioxid) gibt an, wo gasförmige, flüssige und feste Phase am stabilsten sind, d.h. das niedrigste chemische Potential aufweisen. Am kritischen Punkt (Temperatur T_{krit}) ist die Dichte des Dampfes gleich der Dichte der flüssigen Phase, d.h. die Phasengrenzfläche verschwindet. Im *Tripelpunkt* koexistieren die drei Phasen. Beim Kohlendioxid ist der Druck am Tripelpunkt wesentlich größer als der Atmosphärendruck. Unter normalen Bedingungen existiert daher kein flüssiges CO₂.

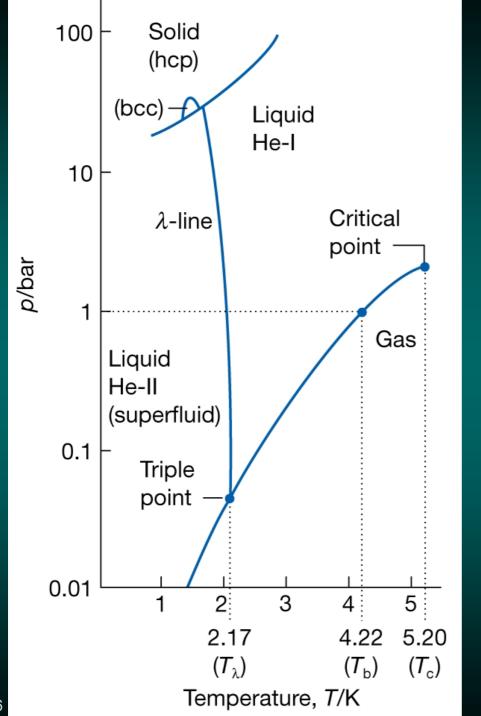


Annäherung an den kritischen Punkt (a) ⇒ (c)

13.06.2006 16:37 PC I-Kap.4 25



Phasendiagramm von Wasser



Phasendiagramm von Helium

13.06.2006

Die Gibbsche Phasenregel

Betrachtet wird ein System aus

P Phasen

K Komponenten

F Freiheitsgraden

F ist die Anzahl von Zustandsvariablen, die unabhängig voneinander variiert werden können, ohne dass eine Phase verschwindet.

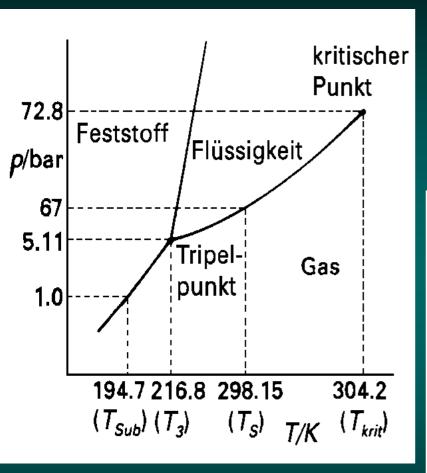
Phasenregel von Gibbs:

$$F = K - P + 2$$

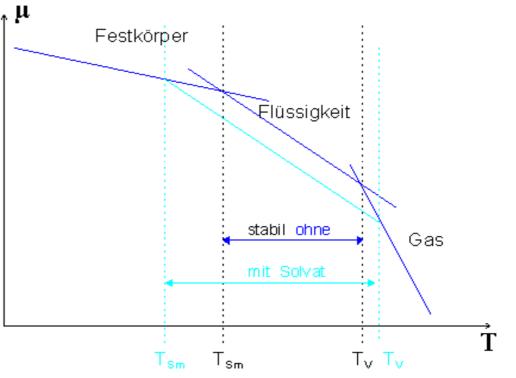
Falls chemische Reaktionen möglich sind und R für die Zahl der unabhängigen chemischen Gleichgewichtsbedingungen steht, gilt:

$$F = K - P - R + 2$$

Phasengrenzen



Temperaturabhängigkeit und Stabilität von Phasen: $(\partial \mu/_{dT})_p = -S_m$;



Phasengrenzen - Clapeyronsche Gleichung

Phasengrenzlinien

Bedingung für zwei Phasen im Gleichgewicht

$$\mu^{\alpha}(p,T) = \mu^{\beta}(p,T)$$

$$dG = -SdT + Vdp$$

$$dG/_{n} = d\mu = -S_{m}dT + V_{m}dp \implies -S_{m}^{\alpha}dT + V_{m}^{\alpha}dp = -S_{m}^{\beta}dT + V_{m}^{\beta}dp$$

Clapeyronsche Gleichung: $\frac{dp}{dT} = \frac{\Delta S_m}{\Delta V_m}$

hierin sind $\Delta S_m = S_m^{\beta} - S_m^{\alpha}$ und $\Delta V_m = V_m^{\beta} - V_m^{\alpha}$ die Änderungen der molaren Entropie und des molaren Volumens des Systems während des Phasenübergangs.

Phasengrenzen

Die Phasengrenzlinie fest/flüssig

molare Schmelzentropie $^{\Delta_{Sm}H}/_{T}$

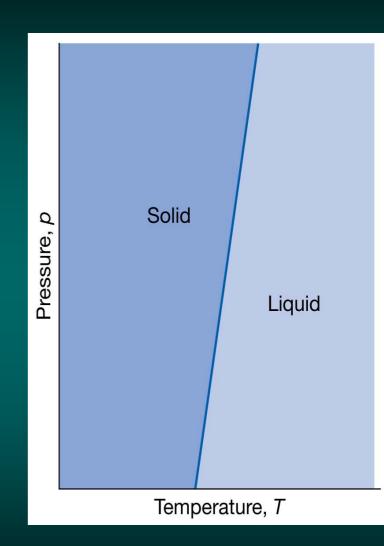
$$dp/_{dT} = {^{\Delta}_{Sm}}^{H}/_{T_{\Delta}V_{Sm}}$$

Näherungsgleichung für die Phasengrenzlinie fest/flüssig

$$p = p^* + {^{\Delta_{Sm}}H}/_{\Delta V_{Sm}} ln (T/_{T^*})$$

Für kleine Temperaturdifferenzen T-T*

$$p = p^* + {^{\Delta}_{Sm}}^H /_{\Delta V_{Sm}} (T - T^*) /_{T^*}$$



Phasengrenzen

Die Phasengrenzlinie fest/gasförmig

Volumenänderung ∆V wird durch Gasphase bestimmt.

$$d \ln p/_{dT} = \Delta_{Sub}H/_{RT^2}$$

$$p = p^* exp \left[\Delta_{Sub} H / \left(1 / T^* - 1 / T \right) \right]$$

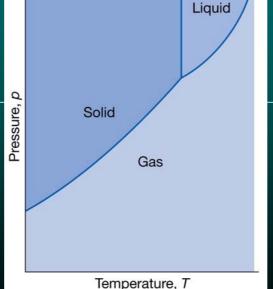
Die Phasengrenzlinie flüssig/gasförmig

$$\Delta V_{V} \approx V_{m}(g) = RT/p$$

Clausius-Clapeyronsche-Gleichung:

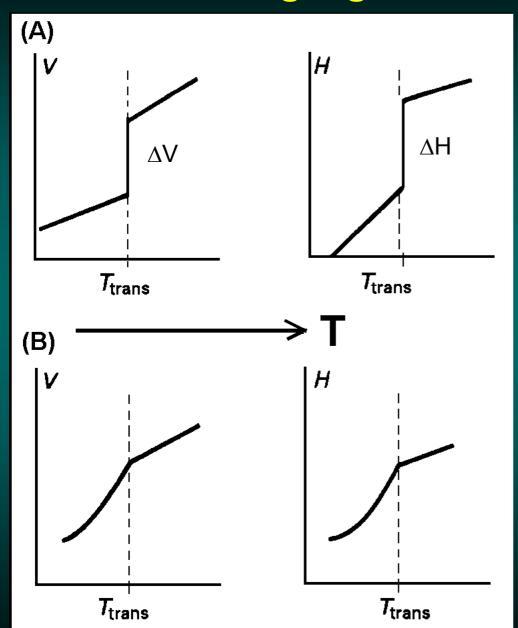
$$d \ln p/_{dT} = \Delta_V H/_{RT^2}$$

$$p = p^* exp \left[\frac{\Delta_V H}{R} \left(\frac{1}{T^*} - \frac{1}{T} \right) \right]$$



13.06.2006 16:37

Phasenübergänge erster und zweiter Ordnung



Erster Ordnung

V, H, S ändern sich bei infinitesimaler Temperaturänderung um einen endlichen Betrag; ebenso die ersten Ableitungen der chemischen Potentiale ^{dµ}/_{dT} nach Temperatur (und Druck) ändern sich sprunghaft.

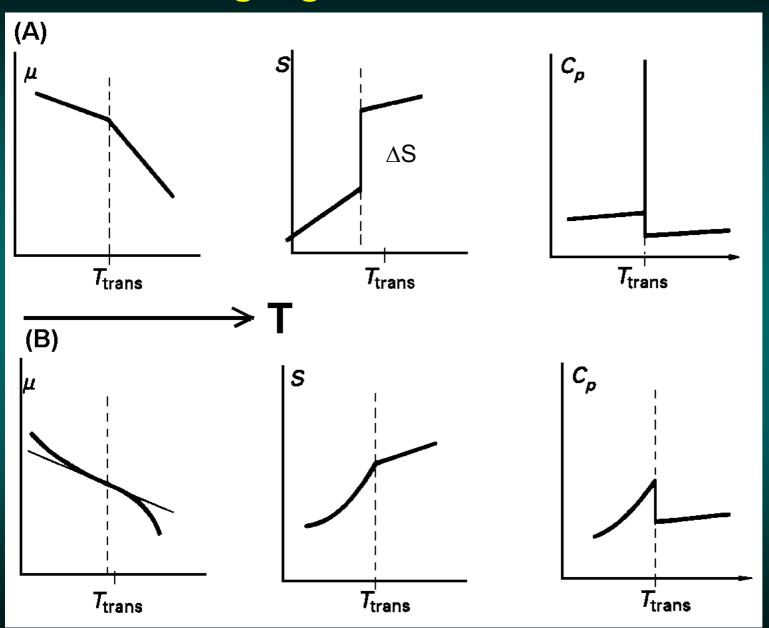
Zweiter Ordnung

Zwar verlaufen V, H, S und die 1. Ableitung von µ stetig, aber nicht die nächste Ableitung.

Die Wärmekapazität zeigt am Übergang zwar eine Unstetigkeit, wird aber nicht singulär.

Beispiel: normal- zu supraleitende Phase.

Phasenübergänge erster (A) und zweiter (B) Ordnung

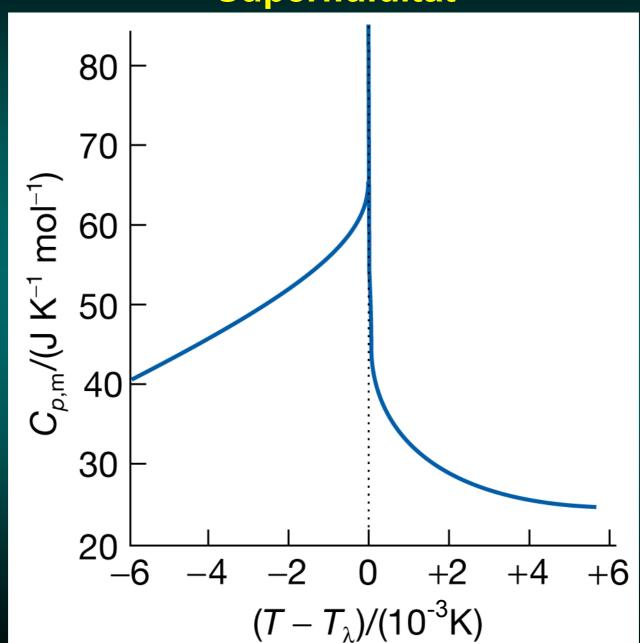


$$C_{p} = \frac{\partial H}{\partial T}$$

$$\mu^{\alpha} = \mu^{\beta}$$

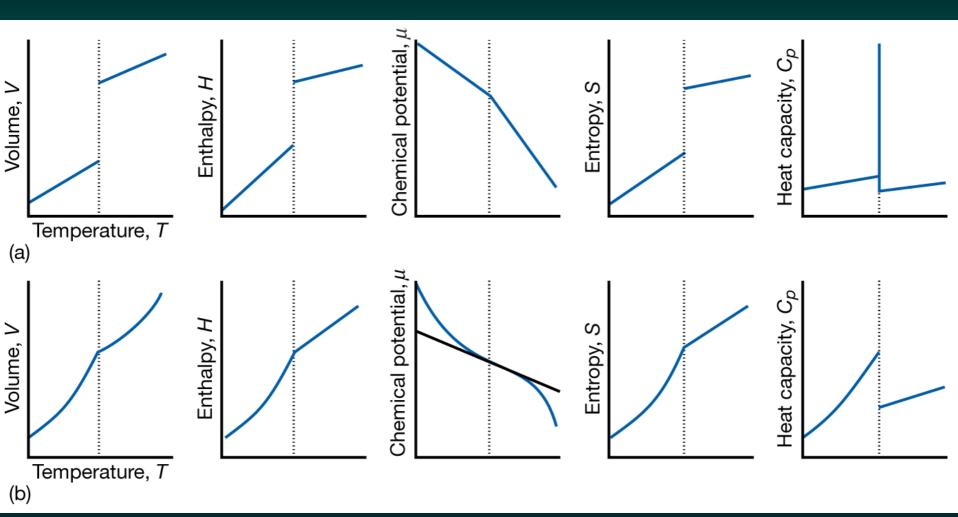
$$\frac{(\partial \mu}{\partial T})_{p} = -S_{m}$$

Spez. Wärme von He beim Phasenübergang zur Superfluidität

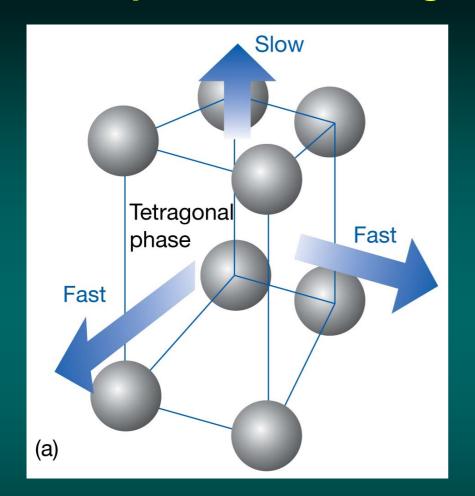


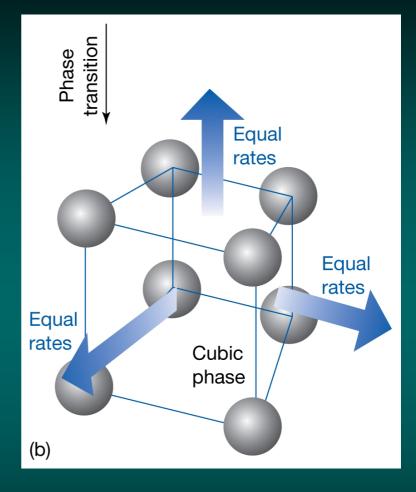
13.06.2006 16:37

Phasenübergänge erster (a) und zweiter (b) Ordnung



Beispiel Phasenübergang zweiter Ordnung





Die tetragonale Phase (a) eines Gitters dehnt sich schneller (und stetig) in zwei Raumrichtungen aus, bis die kubische Symmetrie (b) erreicht ist.

Keine sprunghafte Änderung ⇒ keine sprunghafte Enthalpiezunahme