Lösungen zum Übungsblatt 10

Aufgabe 1

- a) vierbeiniger, rechteckiger Tisch
 - C2-Achse senkrecht zur Tischplatte in der Tischmitte
 - \bullet zwei Spiegelebenen σ_v , die die \emph{C}_2 -Achse enthalten und je zwei Seiten der Tischplatte halbieren
- b) vierbeiniger, quadratischer Tisch
 - C₄-Achse senkrecht zur Tischplatte in der Tischmitte (schließt die C₂-Achse aus a) mit ein)
 - $\,$ vier Spiegelebenen $\,\sigma_{\rm v}\,$, zusätzlich zu a) gibt es zwei weitere Spiegelebenen entlang der Diagonalen der Tischplatte
- c) dreibeiniger Hocker
 - C₃-Achse parallel zu den Beinen durch die Mitte der Sitzfläche
 - drei Spiegelebenen $\,\sigma_{\scriptscriptstyle V}\,$, die die $\it C_{\it 3}$ -Achse und jeweils ein Bein enthalten

d) Stuhl

- eine Spiegelebene, die den Stuhl parallel zu den Beinen und senkrecht zur Rückenlehne halbiert
- e) Würfel ohne Zahlen
 - sechs C₂-Achsen durch die Mittelpunkte zweier gegenüberliegender Kanten
 - drei C₄-Achsen durch die Mittelpunkte zweier gegenüberliegender Flächen
 - vier C₃-Achsen entlang der vier Raumdiagonalen
 - Inversionszentrum i in der Würfelmitte
 - insgesamt neun Spiegelebenen, davon drei parallel zu den Würfelflächen (σ_{h}) und sechs diagonal dazu (σ_{d})
 - die C₄-Achsen sind gleichzeitig S₄-Drehspiegelachsen
 - die C₃-Achsen sind gleichzeitig S₆-Drehspiegelachsen
- f) Der Würfel mit Zahlen besitzt keines der zu bestimmenden Symmetrieelemente.

Aufgabe 2

a) Xe

- eine Kugel enthält alle der angegebenen Symmetrieelemente
- unendlich viele C_{∞} -Achsen durch den Mittelpunkt, die gleichzeitig Drehspiegelachsen sind (S_{∞})
- ein Inversionszentrum im Mittelpunkt
- unendlich viele Spiegelebenen, die den Mittelpunkt enthalten
- drei Translationsfreiheitsgrade, keine Rotations- oder Schwingungsfreiheitsgrade

b) XeF4

- quadratisch-planares Molekül
- zwei C₂-Achsen durch F-Xe-F und zwei im 45°-Winkel dazwischen
- C₄-Achse senkrecht zur Molekülebene durch Xe
- i auf dem Xenonatom
- eine σ_h -Spiegelebene in der Molekülebene und je zwei Spiegelebenen senkrecht zur Molekülebene, die die jeweilige C_2 -Achsen enthalten, also zwei σ_v und zwei σ_v
- die C₂-Achsen sind gleichzeitig S₂- und die C₄-Achsen S₄-Drehspiegelachsen
- drei Translations-, drei Rotations- und 3n-6 = 9 Schwingungsfreiheitsgrade

c) SF₆

- oktaedrisches Molekül
- drei C₄-Achsen durch je zwei gegenüberliegende Eckpunkte
- vier C₃-Achsen durch die Mittelpunkte zweier gegenüberliegender Dreiecke
- sechs C₂-Achsen, die je zwei gegenüberliegende Kanten halbieren
- Inversionszentrum auf dem S-Atom
- neun Spiegelebenen, drei σ_h durch je vier Ecken und sechs σ_d durch je zwei Ecken und zwei Kantenmittelpunkte
- die C₄-Achsen sind gleichzeitig S₄-Drehspiegelachsen
- die C₃-Achsen sind gleichzeitig S₆-Drehspiegelachsen
- drei Translations-, drei Rotations- und 3n-6 = 15 Schwingungsfreiheitsgrade

d) HBr

- lineares Molekül
- C_∞ -Achse entlang der Bindungsachse
- unendlich viele Spiegelebenen $\sigma_{\rm v}$, die die C_{∞} -Achse enthalten
- drei Translations-, zwei Rotationsfreiheitsgrade und 3n-5=1 Schwingungsfreiheitsgrad

e) H₂O₂

- gewinkeltes Molekül mit einem Diederwinkel von 111°
- C₂-Achse senkrecht zur O-O-Bindung entlang der Winkelhalbierenden des Diederwinkels
- drei Translations-, drei Rotations- und 3n-6=6 Schwingungsfreiheitsgrade

f) H₂C₂

- lineares Molekül
- C_∞ -Achse entlang der Molekülachse
- unendlich viele C2-Achsen senkrecht zur Molekülachse durch das Inversionszentrum
- Inversionszentrum i zwischen den beiden Kohlenstoffatomen
- eine Spiegelebene σ_h senkrecht zur Molekülachse, die das Inversionszentrum beinhaltet und unendlich viele Spiegelebenen σ_v , die die C_∞ -Achse enthalten
- die C_{∞} -Achse ist gleichzeitig S_{∞} -Drehspiegelachse
- drei Translations-, zwei Rotations- und 3n-5=7 Schwingungsfreiheitsgrade

g) NH₃

- trigonal-pyramidales Molekül
- eine *C*₃-Achse durch das Stickstoffatome und die Mitte des durch die Wasserstoffatome aufgespannten Dreiecks
- drei σ_v -Spiegelebenen, die die C_3 -Achse und je ein Wasserstoffatom enthalten
- drei Translations-, drei Rotations- und 3n-6=6 Schwingungsfreiheitsgrade

h) BH₃

- trigonal-planares Molekül
- eine C₃-Achse senkrecht zur Molekülebene durch das Boratom
- drei C₂-Achsen entlang jeder B-H-Bindung
- eine σ_h -Spiegelebene in der Molekülebene und drei σ_v senkrecht dazu, die die C_3 -Achse und je ein Wasserstoffatom enthalten

- die C₃-Achse ist gleichzeitig S₃-Drehspiegelachse
- drei Translations-, drei Rotations- und 3n-6=6 Schwingungsfreiheitsgrade

i) C₃O₂

- lineares Molekül
- C_∞ -Achse entlang der Molekülachse
- unendlich viele C2-Achsen senkrecht zur Molekülachse durch das Inversionszentrum
- Inversionszentrum i auf dem mittleren Kohlenstoffatom
- eine Spiegelebene σ_h senkrecht zur Molekülachse, die das Inversionszentrum beinhaltet und unendlich viele Spiegelebenen σ_v , die die C_∞ -Achse enthalten
- die C_{∞} -Achse ist gleichzeitig S_{∞} -Drehspiegelachse
- drei Translations-, zwei Rotations- und 3n-5 = 10 Schwingungsfreiheitsgrade

Aufgabe 3

Für nicht-lineare Moleküle gilt für die Anzahl der Schwingungsfreiheitsgrade S:

$$S=3n-6$$

Dabei steht *n* für die Anzahl der Atome im Molekül.

Die Alkane besitzen die allgemeine Summenformel C_kH_{2k+2} . Demnach ergibt sich für die Anzahl der Atome n:

$$n = k + 2k + 2 = 3k + 2$$

Eingesetzt in die Gleichung für S erhält man:

$$S=3\cdot(3k+2)-6=9k$$

Für die Alkene gilt die Summenformel C_kH_{2k} . Für n ergibt sich:

$$n=k+2k=3k$$

Somit resultiert ein S von:

$$S = 3.3k - 6 = 9k - 6$$

Für die Alkine gilt die Summenformel C_kH_{2k-2} . Hier muss das Ethin $(C_2H_2$, also k=2) extra betrachtet werden, da Ethin das einzige lineare Alkin ist. Für lineare Moleküle gilt für die Anzahl der Schwingungsfreiheitsgrade:

$$S=3n-5$$

Da Ethin aus 4 Atomen aufgebaut ist, ergibt sich für S:

$$S = 3.4 - 5 = 7$$

Alle anderen Alkine (k>2) sind nicht-lineare Moleküle. Für n gilt:

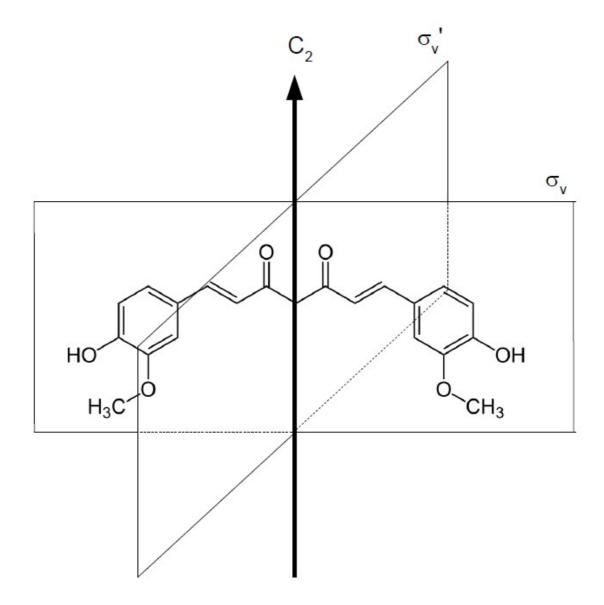
$$n = k + 2k - 2 = 3k - 2$$

Und für S gilt schlussendlich:

$$S=3\cdot(3k-2)-6=9k-6-6=9k-12$$

Aufgabe 4

Das Molekül Curcumin ist in der folgenden Abbildung zusammen mit allen Symmetrieelementen dargestellt.



Mit diesen Symmetrieelementen gehört Curcumin zur Punktgruppe $C_{2\nu}$. Damit hat es dieselbe Punktgruppe wie Wasser!