11. Übungsblatt zur Vorlesung Physikalische Chemie II

- Kinetik und Struktur -

Wintersemester 2014/15

Prof. Dr. K.-H. Gericke, Mathias Piescheck

Aufgabe 1

Bestimmen Sie mit Hilfe des Schönflies-Schema die Punktgruppe für die folgende Moleküle:

- a) sec-Butanol
- b) H₂O₂

c) Hypochlorige Säure

- d) Sulfuryldifluorid
- e) Propin
- f) HCI

- g) Borsäure
- h) Diboran
- i) Phosphorpentachlorid

j) Benzol

- k) Diacetylen
- I) CH₄

Aufgabe 2

Welche der folgenden Moleküle können polar sein?

- a) Pyridin (C_{2v})
- b) Nitroethan (C_s)
- c) $HgBr_2(g)$ ($D_{\infty h}$)

- d) $B_3N_3H_6$ (D_{3h})
- e) CH₃Cl (C_{3v})

Zeichnen Sie die Struktur unter Berücksichtigung der Symmetrie und, falls vorhanden, das Dipolmoment mit ein.

Aufgabe 3

Zeigen Sie anhand der Punktgruppe C_{4v}, dass auch hier das Orthogonalitätstheorem gilt.

C _{4v}	Е	2C ₄ (z)	C ₂	$2\sigma_{\rm v}$	$2\sigma_d$
A ₁	+1	+1	+1	+1	+1
A ₂	+1	+1	+1	-1	-1
B ₁	+1	-1	+1	+1	-1
B ₂	+1	-1	+1	-1	+1
Е	+2	0	-2	0	0

Aufgabe 4

Welche Symmetrieoperationen resultieren bei der Kombination der folgenden einzelnen Symmetrieoperationen?

- a) C_4 und C_4
- b) C_3 und C_3^{-1}
- c) C_4 und C_4^3

- d) C_4 und i
- e) C_4 und C_2
- f) C_4 und σ_h

- g) C_4 und σ_v
- h) C_4 und S_4