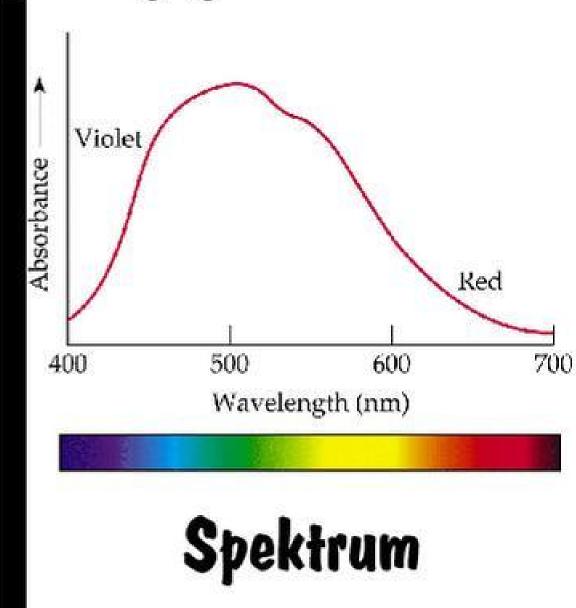
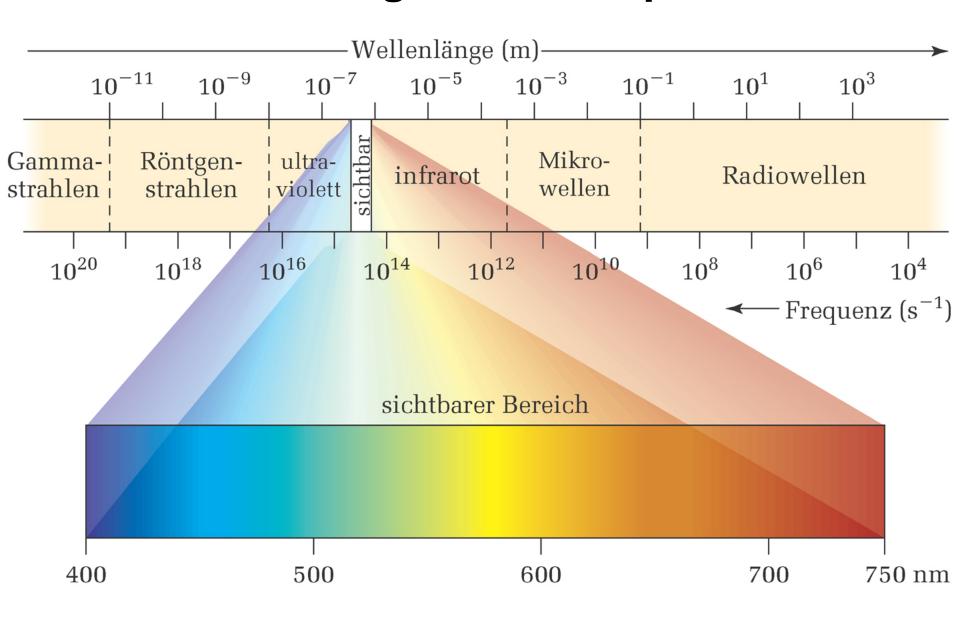
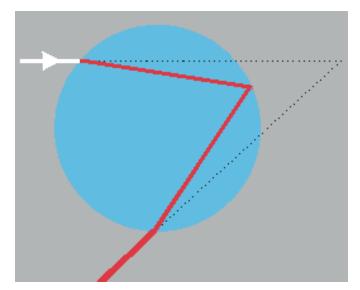

PC II Kinetik und Struktur

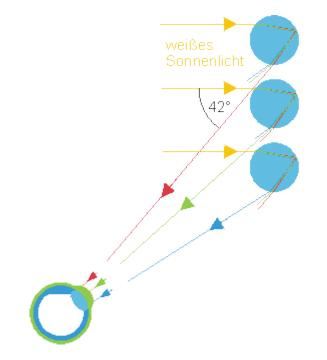

Grundzüge der Spektroskopie

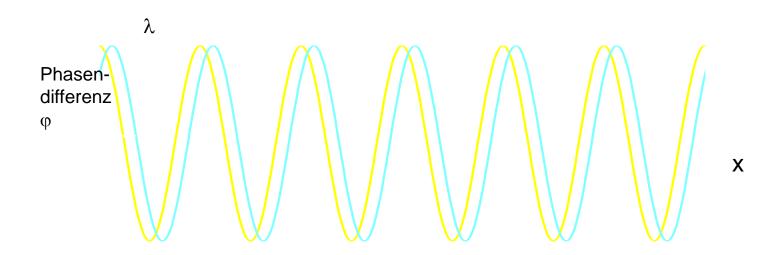
Spektralbereiche, Dipolmoment, Molekülschwingungen, Energie der Schwingungen, IR-Absorptions- und Raman-Spektroskopie


Verwechslungsgefahr

Speck drum




Elektromagnetisches Spektrum



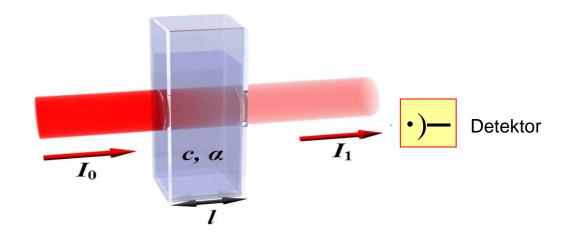
Ein Spektrometer

Licht, eine elektromagetische Welle

Frequenz $\omega = 2\pi v$; $\lambda = c/v$

Amplitude A

Phase φ


Daraus folgen zwei Messprinzipien:

Die Frequenz v (Wellenlänge $\lambda=c/v$) wird verändert und der Einfluss auf die

- a) Amplitude (Intensitätsänderung)
- b) Phase (über Interferenz)wird gemessen.

Absorption

Ein Lichtstrahl (gerichtete elektromagnetische Strahlung) wird durch eine Küvette der Länge \emptyself gestrahlt und die transmitierte Intensität gemessen.

$$dI \sim -I d\ell \implies dI = -\alpha I d\ell \implies I = I_0 e^{-\alpha \ell}$$

$$I = I_0 10^{-\alpha'\ell} = I_0 10^{-\epsilon C\ell}$$
$$I = I_0 e^{-\alpha\ell} = I_0 e^{-\sigma N\ell}$$

$$I = I_0 e^{-\alpha \ell} = I_0 e^{-\sigma N \ell}$$

c : Konzentration [Mol L⁻¹]

ε: Extinktionskoeffizient [L Mol⁻¹ cm⁻¹]

N: (absorptionsfähige) Moleküle [cm⁻³]

σ: Absorptionsquerschnitt [cm²]

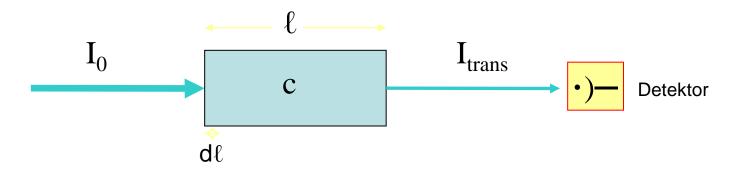
Umrechnung: ε c ln $10 = \sigma$ N (Einheiten beachten!)

August Beer

* 31. Juli 1825 in Trier

† 18. November 1863 in Bonn

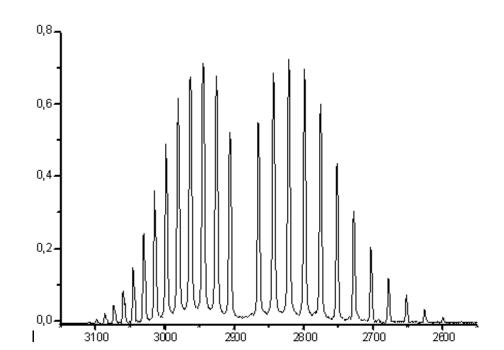
Deutscher Mathematiker, Chemiker und Physiker

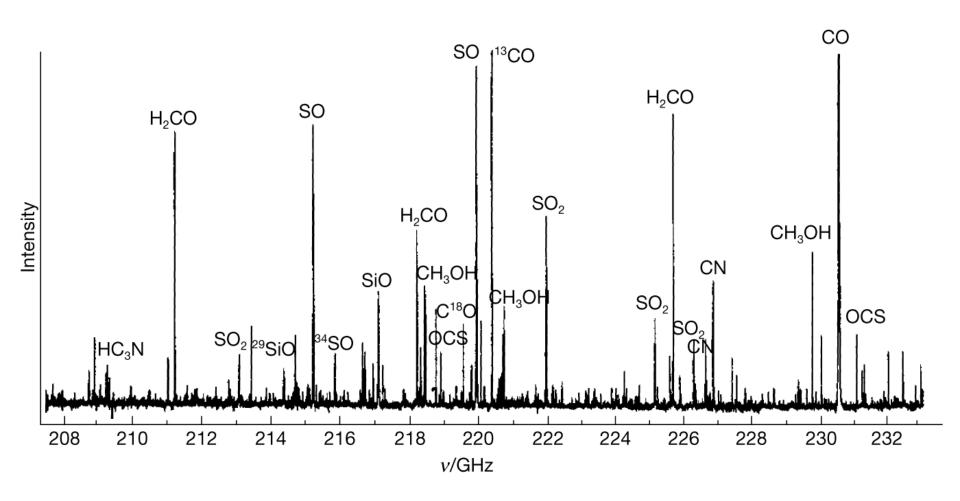

Johann Heinrich Lambert

* 26. August 1728 in Mülhausen

† 25. September 1777 in Berlin

Deutscher Mathematiker, Physiker und Philosoph, der die Irrationalität der Zahl Pi bewies.

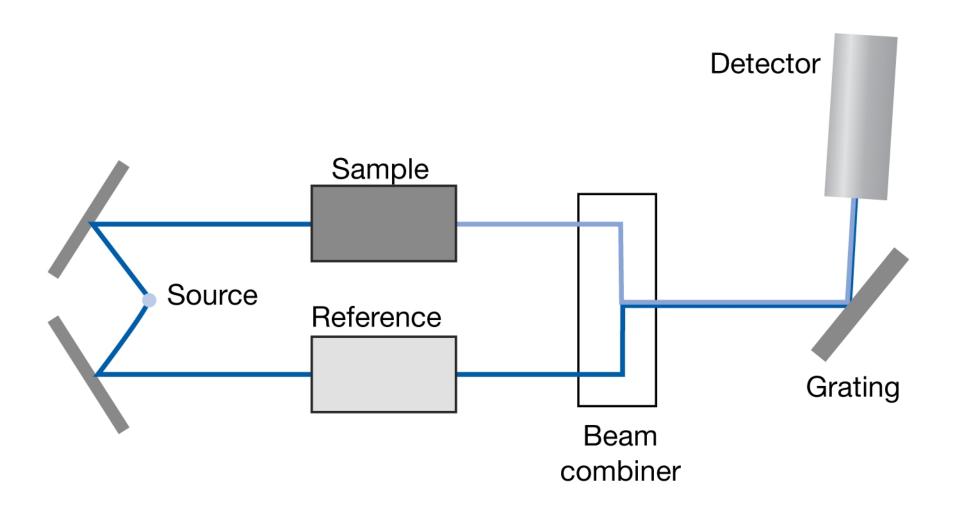

Absorption: Lambert-Beersches Gesetz

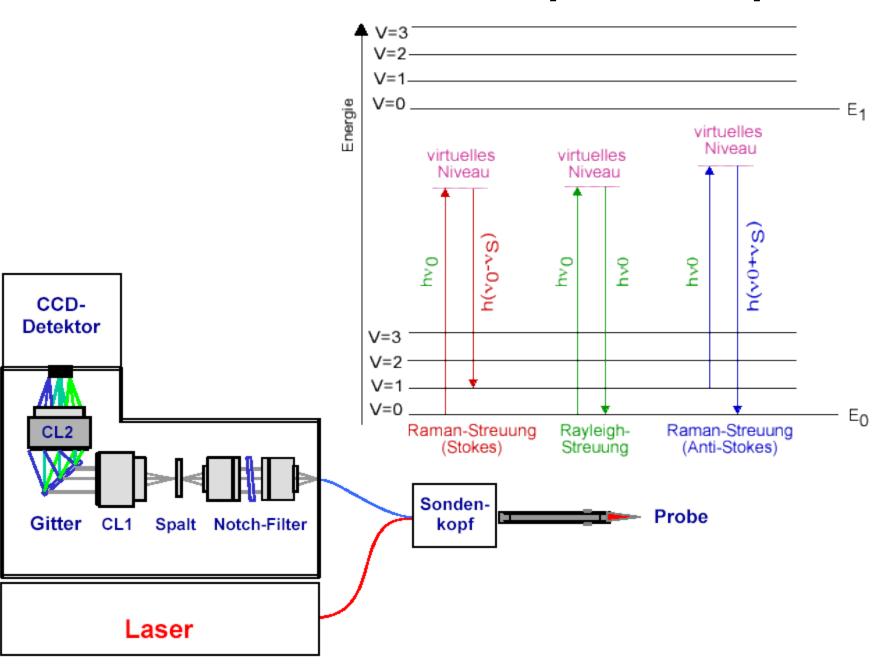

$$I(v) = I_0(v) 10^{-\varepsilon C\ell}$$

$$I(v) = I_0(v) 10^{-\epsilon c \ell}$$

$$I(v) = I_0(v) e^{-\sigma(v)N(v)\ell}$$

$$ec\ell = log(^{I}_{0/I})$$
 := optische Dichte $\sigma(v)N(v)\ell = ln(^{I}_{0/I})$:= Absorbanz


Reine Rotationsspektren - Mikrowellen

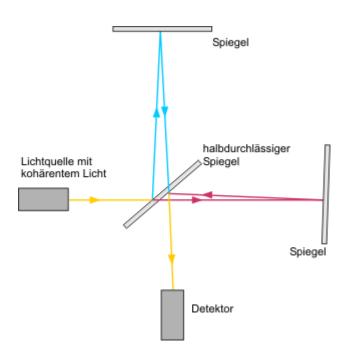

Das Rotationsspektrum des Orionnebels mit den spektralen Fingerabdrücken zwei- und mehratomiger Moleküle in der Wolke.

(Nach G. A. Blake et al., Astrophys. J. 315 (1987) 621.)

Absorptionsspektrometer

Raman-Spektroskopie

Chandrasekhara Venkata Raman


Chandrasekhara Venkata Raman

* 7. Nov. 1888 in Trichinopoly (Indien)

+ 21. Nov. 1970 Karnataka (Indien)

1930 Nobelpreis für Physik

FTIR-Spektroskopie (Interferenz)

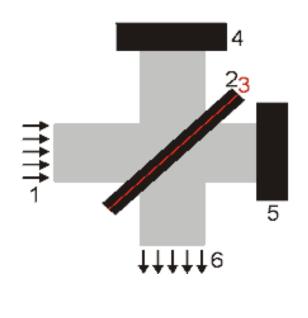
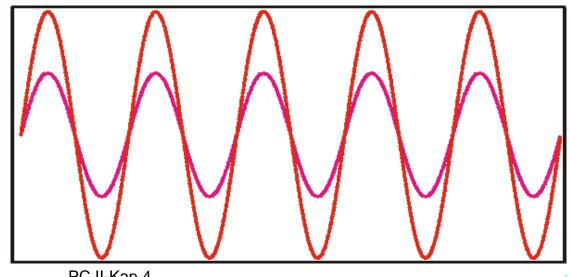
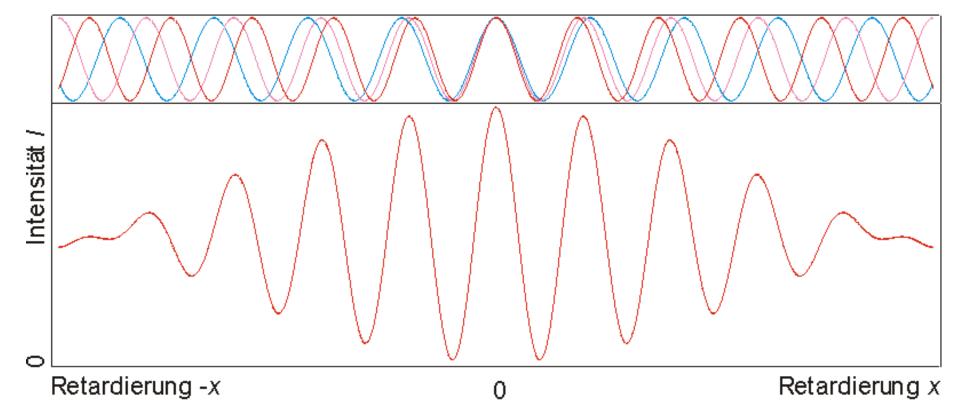
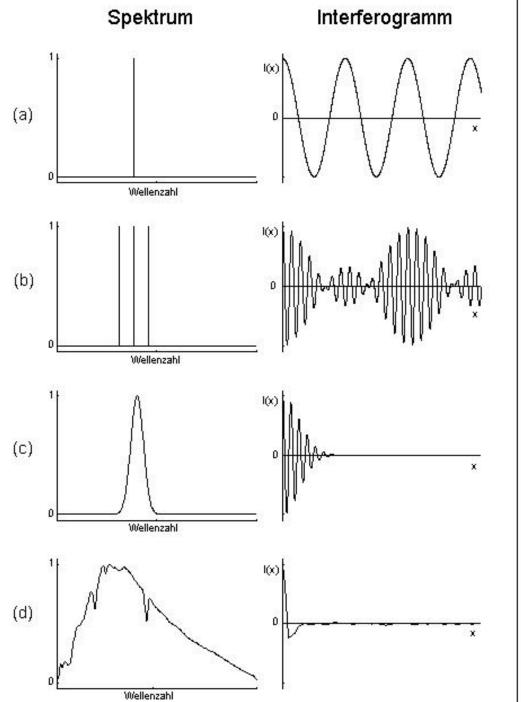



Abb. rechts: beide Wellen (grau und lila) interferieren (überlagern sich) zu einer resultierenden Welle (rot)

$$I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\left(\frac{2\pi}{\lambda}x\right)$$

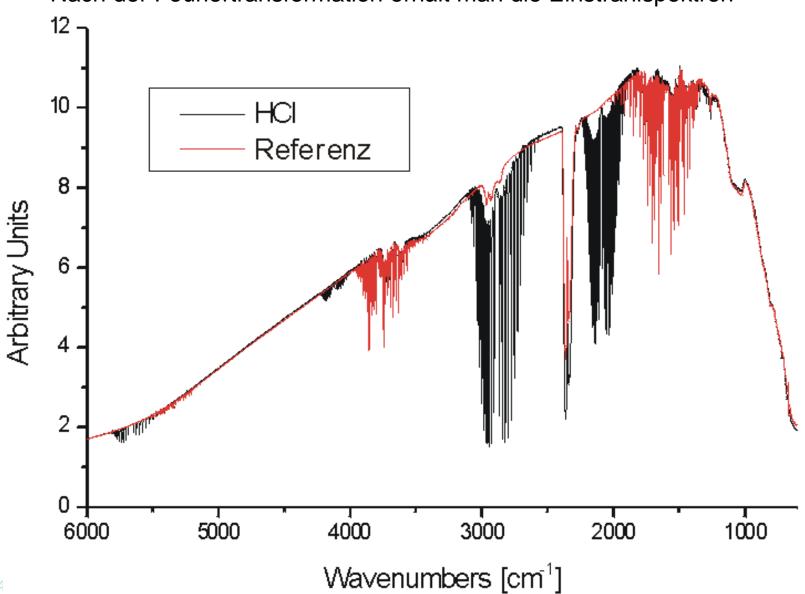

[Bemerkung: die graue sieht man nur als Animation]

.01.2014 08:09 PC II-Kap.4

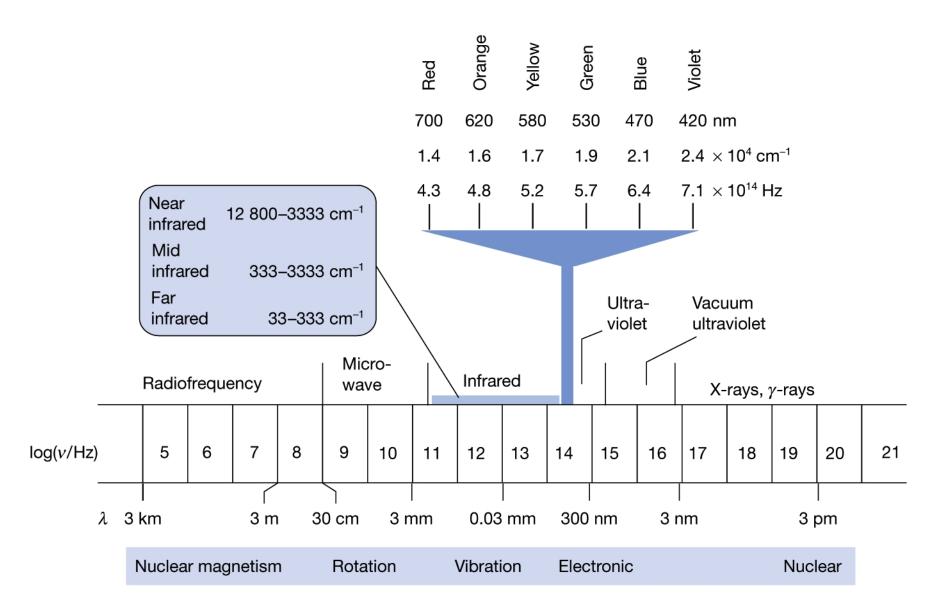

FTIR-Spektroskopie (Interferenz)

Da Spektrometer Licht vieler Wellenlängen verarbeiten, entsteht die Interferenz für **jede** Wellenlänge. Entsprechend überlagern sich die Interferenz-Intensitäten der einzelnen Wellenlängen zusätzlich.

Überlagert man alle Wellenlängen (Kontinuum) des an der Messung beteiligten Lichts, so ergibt sich die vom Detektor erfasste Intensität; als Integral über die Bandbreite B der Anordnung: $I(r) = \int I(\widetilde{r}) \cos(2\pi \widetilde{r}r) d\widetilde{r}$


07.01.2014 08:09

07.01.2014 08:09 Wellenzahl


FTIR-Spektroskopie

Nach der Fouriertransformation erhält man die Einstrahlspektren

07.01.2014

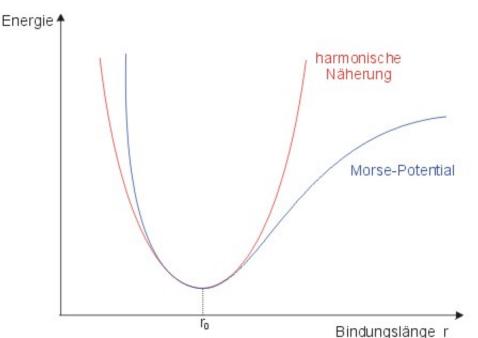
Spektralbereiche

Energieumrechnungen

Die IR-Spektroskopie (mittleres Infrarot) von Schwingungen umfasst die Spektralbereiche der elektromagnetischen Strahlung

400 4000 cm ⁻¹	Wellenzahlen
25 2,5 μm	Mikrometer
12 120 THz	Terahertz
50 500 meV	Millielektronenvolt

Alle diese Angaben sind äquivalent und durch folgende Umrechnungen miteinander verknüpft:

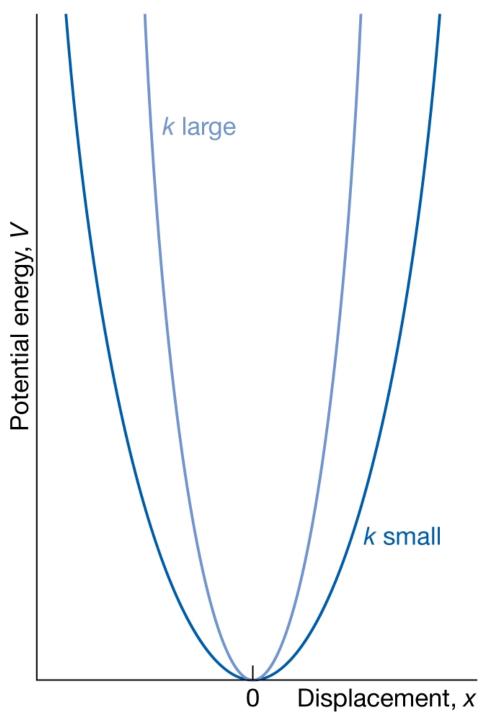

$$\lambda \text{ [µm]} = 10000 / v^{\text{c}} \text{ [cm}^{-1]}$$
 $\lambda = c^{\text{c}}/_{v} \text{ v} = c^{\text{c}}/_{\lambda}$ $v \text{ [Hz]} = 3.10^{10} \cdot v^{\text{c}} \text{ [cm}^{-1]}$ $v = c^{\text{c}}/_{\lambda}$ $v = c^$

h: PLANCKsches Wirkungsquantum

e: Elementarladung

07.01.2014 08:09 U : Spannung [Volt]; hier 1V

Molekülschwingungen


Harmonische Näherung des Potentials: $V(r) = \frac{1}{2} kr^2$

Kraft
$$F = -\frac{\partial V}{\partial r} = -k r$$

Kraft $F = m \ddot{r}$ (für eine Masse)

Die Bewegungsgleichung $m \ddot{r} = -k r$ hat die Lösung

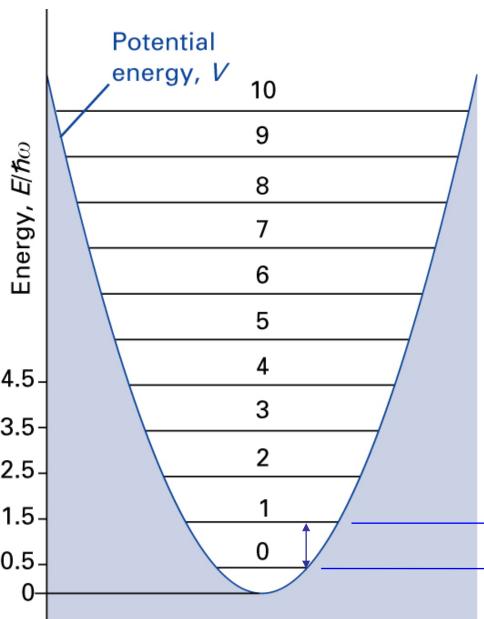
 $r = a \sin \omega t$ (periodische Schwingung) mit Kreisfrequenz

$$\omega = 2\pi \nu = \sqrt{\frac{k}{m}} \qquad \omega = 2\pi \nu = \sqrt{\frac{k}{\mu}}$$

$$\omega = 2\pi \nu = \sqrt{\frac{k}{\mu}}$$

Molekülschwingungen

In Molekülen schwingen die Atome gegeneinander, wobei sich der Schwerpunkt nicht verschieben darf. Im einfachsten Fall eines zweiatomigen Moleküls A-B, mit den beiden Massen m_A und m_B bleibt die Lösung erhalten, nur muss die Masse m durch die reduzierte Masse µ ersetzt werden:

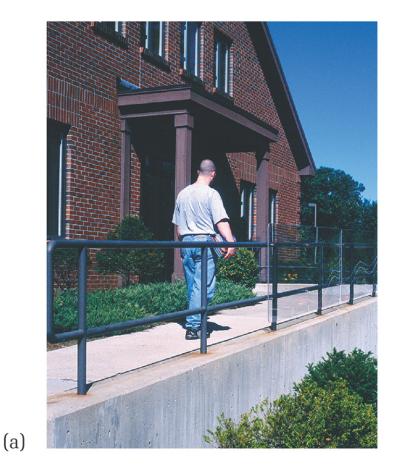

$$\omega = 2\pi \nu = \sqrt{\frac{k}{\mu}}$$

Die Quantenmechanik zeigt, dass die Energie der Schwingung durch

$$E = h\nu = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}}$$

gegeben ist.

Molekülschwingungen



Die Quantenmechanik zeigt auch, dass die Schwingungsenergie nur ganzzahlige Vielfache von

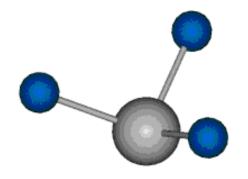
sein kann und dem Molekül nur jeweils dieser Betrag als Schwingungsenergie zugeführt werden kann (für V(r)=-kr²).

$$E = h\nu = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}}$$

Die Energie (auch der Schwingung) ist gequantelt

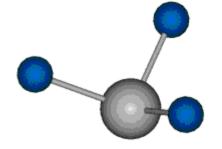
Die potenzielle Energie einer Person, die eine Rampe hochgeht (a), nimmt auf gleichmäßige, kontinuierliche Weise zu, während die potenzielle Energie einer Person, die eine Treppe hochgeht (b), stufenartig d. h. auf gequantelte Weise zunimmt.

Typische X-H, X=Y, X=Y Bindungen


Bond Type	k	μ	_ ν
O-H	7	0.94	3600
N-H	6	0.93	3300
C-H	5	0.92	3000
C-C	4.25	6.00	1100
C=C	9.6	6.00	1650
C=0	12	6.86	1725
c≡c	16	6.00	2100
C=N	21	6.46	2350

Schwingungen und Rotationen

Die Quantenmechanik zeigt, dass nur diskrete Energien erlaubt sind und Energiebeträge nur diskret aufgenommen werden können. Die Aufnahme von Energie ist deshalb nur dann möglich, wenn die Frequenz der anregenden Strahlung mit der Übergangsfrequenz E = hv übereinstimmt. Wasser besitzt drei verschiedene, voneinander unabhängige Drehachsen. Die Rotation um jede dieser Drehachsen besitzt ein eigenes Trägheitsmoment. Deshalb benötigt die Anregung dieser verschiedenen Rotationen jeweils einen bestimmten, verschiedenen Energiebetrag. Für reine Rotationsanregungen liegen diese Frequenzen im Mikrowellenbereich, in dem nicht genügend Energie zur Anregung der Schwingungen zur Verfügung steht. Die Schwingungsanregungen absorbieren im infraroten Spektralbereich. Da hier neben der Schwingungsanregung gleichzeitig und gemeinsam die niederenergetischeren Rotationen angeregt werden, entsteht ein Rotations-Schwingungs-Spektrum, das - unter höchster Auflösung betrachtet - sehr komplex sein kann.


Rotations-Schwingungs-Spektren lassen sich nur beobachten, wenn die Moleküle frei rotieren können. Das ist in der Gasphase der Fall. In Flüssigkeiten und Festkörpern ist dies nicht möglich und die Spektren spiegeln nur die Schwingungen wider.

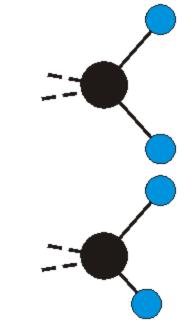
Wieviele unterschiedliche Molekülschwingungen gibt es?

- Ein Molekül besteht aus N Atomen
- Jedes Atom kann sich in 3 Raumrichtungen bewegen, macht 3-N
- davon geht die kollektive Bewegung der Atome ab:
 - das Molekül bewegt sich in drei Raumrichtungen, macht 3-N-3
 - das Molekül kann um drei Achsen rotieren, macht 3-N-6
 - ein lineares Molekül kann nur um 2 Achsen rotieren, macht 3-N-5
- Lineares Molekül hat 3-N-5 Schwingungsmoden
- Nichtlineares Molekül 3-N-6 Schwingungsmoden

Wieviele unterschiedliche Molekülschwingungen gibt es?

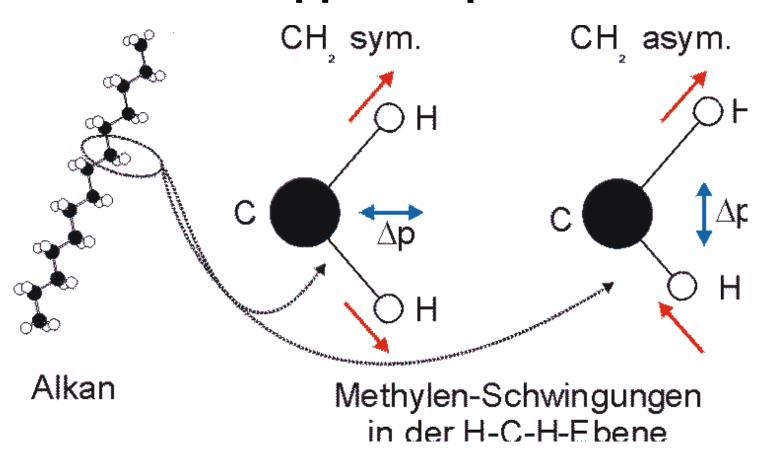
Ammoniak
$$\Rightarrow$$
 N = 4, 3·N-6 = 6 Schwingungen

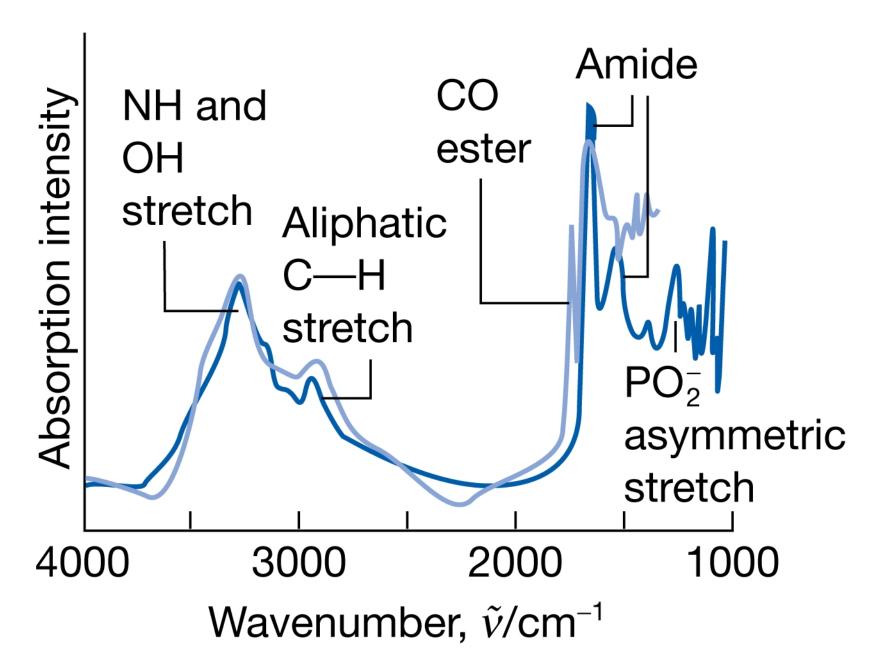
Wasser
$$\Rightarrow$$
 N = 3, 3·N-6 = 3 Schwingungen


Kohlendioxid
$$\Rightarrow$$
 N = 3, 3·N-5 = 4 Schwingungen

Sauerstoff
$$\Rightarrow$$
 N = 2, 3-N-5 = 1 Schwingung

Wie diese Schwingungsmoden "aussehen" werden wir später im Kapitel *Symmetrie* sehen.


Gruppenfrequenzen


CH sym. CH_{asym}. ⊬lolekül als Schwingungen be Ganzes. In guter hwingungen $^{\Delta \eta}$ rechts beeines Moleküls is Δр wegt sich das Kol H. Eigentlich ΗО bewegen sich die s C bewegt sich auch ein wer Alkan Methylen-Schwingungen wesentlich in der H-C-H-Ebene leichter sind, als das C-Atom, bewegt sich das C-Atom viel weniger. Es befindet sich annähernd in Ruhe.

- Schwere Atome schwingen schwächer und langsamer als leichte. Die Frequenz der Schwingungen in z.B. einer Alkankette lassen sich so in verschiedene Bereiche unterteilen: Die H-Atome der einzelnen Methylengruppe schwingen viel schneller, als die Methylengruppen gegeneinander (Deformationsschwingungen im C-C-C Winkel). Man kann diese verschiedene Schwingungen näherungsweise einzeln betrachten. Die Abstraktion auf einzelne Molekülgruppen führt zum Konzept der Gruppenfrequenzen.
- Vielen funktionelle Gruppen besitzen charakteristische Absorptionsfrequenzen. Diese sind nur wenig von ihrer chemischen Umgebung im Molekül abhängig. Sie verschieben sich in deren Abhängigkeit um einen geringen Wert (Shift). So liegt z.B. die Absorption der C=O Doppelbindung einer Carbonylgruppe (-COOH) bei 1705 cm⁻¹, wobei sie aber je nach Umgebung im Bereich 1680...1760 cm⁻¹ liegen kann.

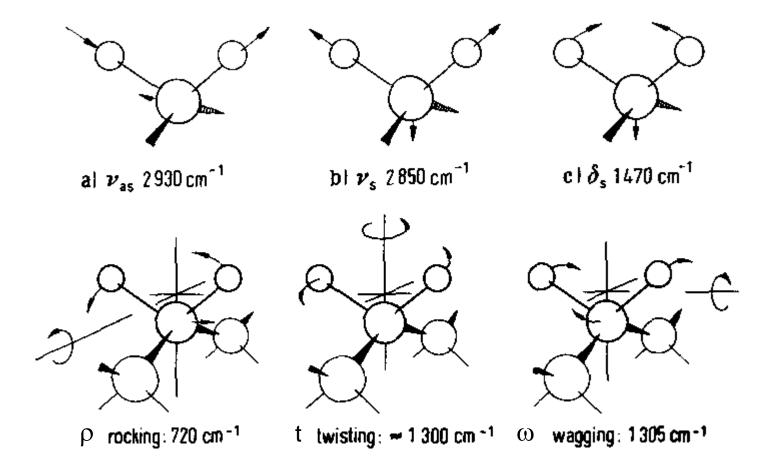
Gruppenfrequenzen

Wellenzahl [cm ⁻¹]	Banden- stärke -form	Schwingungstyp	Verbindungsklasse
ss = sehr star	ss = sehr stark, s = stark, m = mittel, w = schwach, b = breit, sb = sehr breit		
3600-3200	b	ν(OH)	Alkohole, Phenole
3550-3350	b	ν(NH)	Amine (Primäre Amine - 2Banden)
3200-2400	m, sb	ν(OH)	Carbonsäuren
3100-3000	m-w	ν(=C-H)	Aromaten, Olefine
3000-2800	s-m	ν(-C-H)	gesättigte Kohlenwasserstoffe
2960, 2870	s-m	ν(CH ₃)	gesättigte Kohlenwasserstoffe
2925, 2850	W	v(CH ₂)	gesättigte Kohlenwasserstoffe
2600-2550	W	ν(-S-H)	Thiole, Thiophenole
2300-2100	m-s	ν(-C≡X)	Acetylene (X=C), Nitrile (X=N)
2270-2000	S	ν(-X=C=Y)	Isocyanate, Isothiocyanate, Nitrile
1850-1600	S	ν(-C=O)	Carbonylverbindungen
1675-1630	m	ν(-C=C)	Olefine
1650-1620	S	$\delta(-NH_2)$	primäre Säureamide (Amidbande)
1650-1550	m	δ(-N-H)	primäre und sekundäre Amine
1610-1590	m	ν(-C=C)	Ringschwingung der Aromaten

v Streckschwingung einer X-H-Bindung

δ Deformationsschwingung einer X-H-Bindung

Wellenzahl [cm ⁻¹]	Banden- stärke -form	Schwingungstyp	Verbindungsklasse
ss = sehr stark, s = stark, m = mittel, w = schwach, b = breit, sb = sehr breit			
1610-1590	m	ν(-C=C)	Ringschwingung der Aromaten
1560-1515	S	ν(-NO ₂)	Nitroverbindungen
1500-1480	m	v(-C=C)	Ringschwingung der Aromaten
1470-1400	s-m	δ(-C-H)	gesättigte Kohlenwasserstoffe
1460-1420	m	v(-C=C)	Ringschwingung der Aromaten
1420-1330	S	v(-SO ₂	Sulfonylverbindungen
1390-1370	S	δ(-CH ₃)	gesättigte Kohlenwasserstoffe
1360-1030	m-s	δ(C-N)	Amide, Amine
1350-1240	S	$\nu(NO_2)$	Nitroverbindungen
1300-1020	SS-S	ν(-C-O-C)	Ether, Ester, Anhydride, Acetale
1200-1145	m-s	ν(-SO ₂)	Sulfonylverbindungen
1070-1030	S	ν(-S=O)	Solfoxide
970-960	S	δ(=C-H)	Olefine
840-750	S	δ(=C-H)o.o.p.	Substituierte Benzole
800-500	m-w	v(-C-Hal)	Halogenverbindungen
800-600	m-w	ν(-C-S)	Thiole, Thioether


ν Streckschwingung einer X-H-Bindung

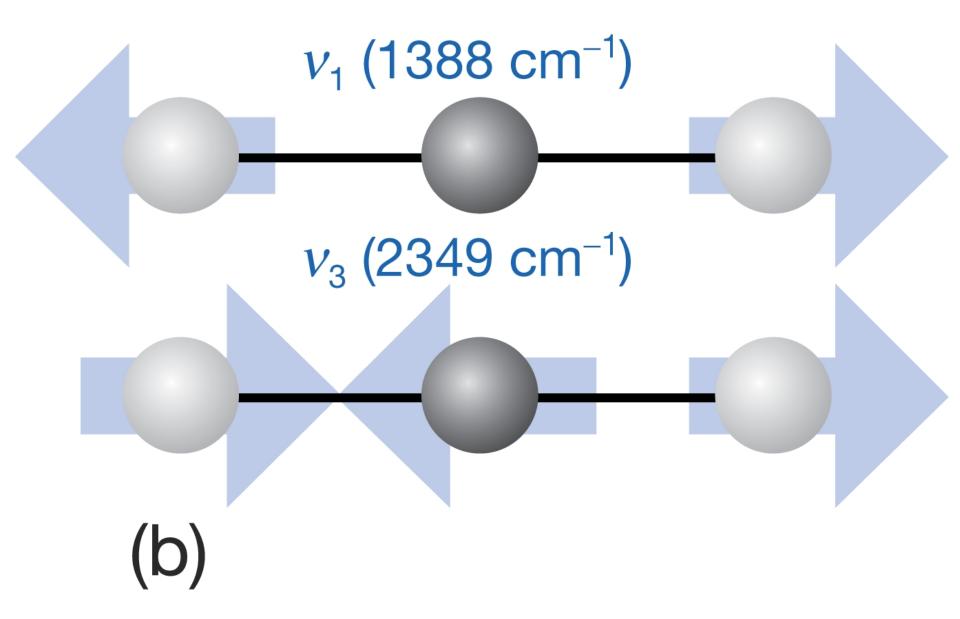
07.01.2014 08:10 PC II-Kap.4

 $[\]delta$ Deformationsschwingung einer X-H-Bindung

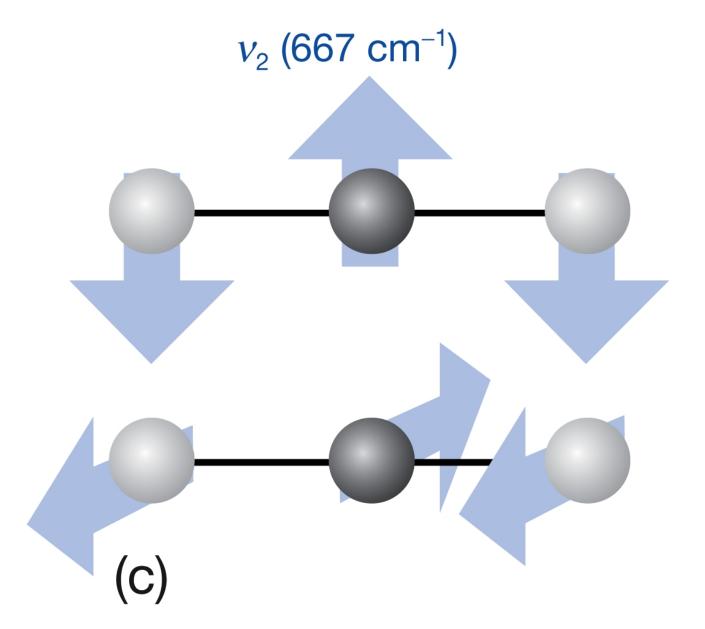
Symbol	Bezeichnung der Schwingungsform	
α, β	i. p. Deformationsschwingung, allgemein	in plane
Γ	o. o. p. Deformationsschwingung von Gerüstatomen	out of plane
γ	o. o. p. Deformationsschwingung	
Δ	i. p. Deformationsschwingung von Gerüstatomen	
δ	i. p. Deformationsschwingung einer X-H-Bindung	
$\delta_{_{ m S}}$	symmetrische Deformationsschwingung (bending)	
$\delta_{\rm as}$	asymmetrische Deformationsschwingung (bending)	
δ'	Deformationsschwingung (twisting, rocking)	
К	o. o. p. wagging Schwingung einer XH ₂ -Gruppe (X ¹ C)	
r	rocking Schwingung	
r_{eta}	i. p. rocking Schwingung	
r_{γ}	o. o. p. rocking Schwingung	
ρ	i. p. rocking Schwingung einer XH ₂ -Gruppe (X ¹ C)	
ν	Streckschwingung einer X-H-Bindung	
$v_{\rm s}$	symmetrische Streckschwingung	
v_{as}	asymmetrische Streckschwingung	
ν_{eta}	i. p. Streckschwingung	
ν_{γ}	o. o. p. Streckschwingung	
t [']	twisting Schwingung	
τ	Torsion, twisting Schwingung einer XH ₂ -Gruppe (X ¹ C)	
Φ	o. o. p. Ring-Deformationsschwingung	
ω	wagging Schwingung	
ω	Streckschwingung von Gerüstatomen ohne H-Bindung	

Schwingungen CH₂-Gruppe, CH₄

3 N − 5 oder Was schwingt noch?


Wasser hat als dreiatomiges nichtlineares Molekül 3 Schwingungsmoden

CO₂ soll 4 haben, aber welche?


- Ok: 1. symmetrische Streckschwingung
 - 2. asymmetrische Streckschwingung
 - 3. Biegeschwingung
- 4. Eine weitere Biegeschwingung:nach "oben" und "unten" +nach "vorne" und "hinten"

Diese beiden Schwingungen sind energetisch nicht zu unterscheiden, man spricht in diesem Fall von einer zweifach entarteten Schwingung.

CO₂-Schwingungen

CO₂-Schwingungen

Bilanz und Fragen

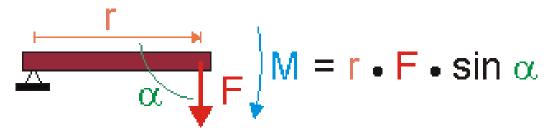
- ✓ Moleküle mit N Atomen haben also 3-N-6 (resp. 3-N-5) Schwingungen
- ✓ Die Gruppierung ermöglicht Atomgruppen und Moleküle zu identifizieren
- ✓ Isotopenmarkierung verschiebt (berechenbar) die Frequenzen $\omega = 2\pi v = \sqrt{\frac{k}{\mu}}$

ABER

- ⊗ Welche kann ich anregen??
- Wie mache ich dies im Experiment???

Absorbieren alle Schwingungsmoden Licht?

Licht ist nach den Maxwell-Gleichungen eine elektromagnetische Welle und kann daher nur mit Ladungen (Magneten) wechselwirken.

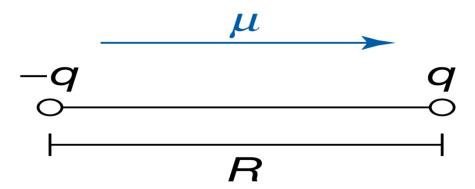

Ein Molekül besteht zwar aus Elektronen, aber eine solche elektronische Anregung benötigt Energien, die typischerweise im UV-Bereich, also bei grob der zehnfachen Energie liegen.

Das Molekül muss also (irgendwie) eine asymmetrische Ladungsverteilung aufweisen, damit Schwingungen (und Rotationen) im IR angeregt werden können.

Dipolmoment

Momente (mal)

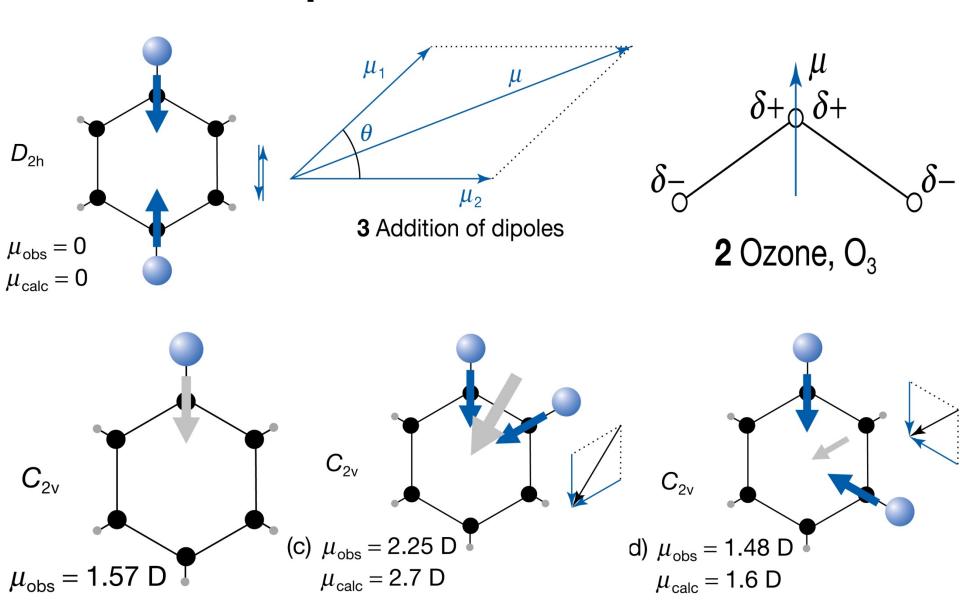
Ein Moment ist allgemein das Produkt zweier physikalischer Größen, von denen eine die Dimension der Länge hat.

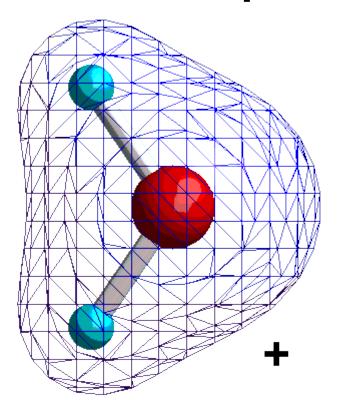

So ist das Drehmoment M das Moment einer Kraft F, die vermittels eines Hebels der Länge r als "Drehkraft" auf den Lagerpunkt dieses Hebels wirkt.

Ganz analog verhalten sich elektrische Kräfte an "starr" verbundenen Ladungen:

Dipolmoment

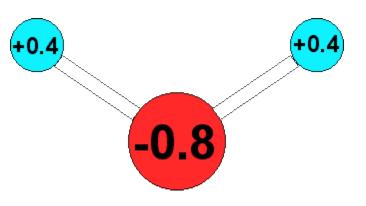
Das resultierende Drehmoment M ist ein Produkt aus der Ladung q, dem Abstand r und der elektrischen Feldstärke E. Ladung und Abstand lassen sich bezüglich des elektrischen Felds zum Moment des Dipols, dem **Dipolmoment** µ, zusammenfassen.

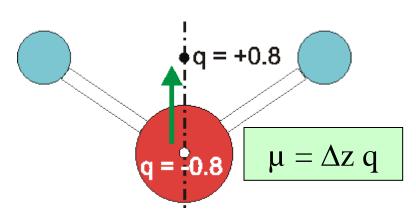

Im Ergebnis dreht sich der Dipol, er richtet sich in Feldrichtung aus. Da beide Ladungen den gleichen Betrag und entgegengesetzte Polarität besitzen, sind auch beide Kräfte gleich groß und entgegengesetzt gerichtet.

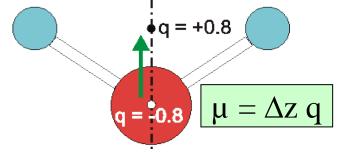

Elektrisches Dipolmoment

$$\mu = \mathbf{R}^* \mathbf{q}$$

Das Dipolmoment ist ein Vektor

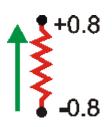


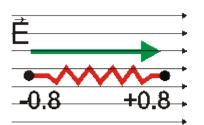

Dipolmoment beim Wasser



links: Serie von quantenmechanisch berechneten Isocharge-Flächen beim H₂O.

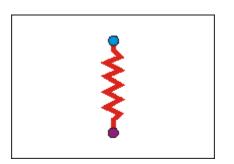
Dargestellt werden Flächen gleicher negativer Ladung (gleicher Elektronendichte) relativ zu einem mittleren Wert. Die Darstellung beginnt mit schwacher (relativ positiver) und dann stärker werdender (relativ negativer) Ladung. Daraus lässt sich ablesen, dass die Ladung (Elektronendichte) vorwiegend am Sauerstoff lokalisiert ist.





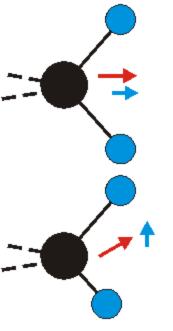
Dipolmoment

Abstrahieren wir nur unser H₂O:

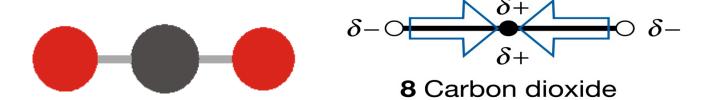

Atome bewegen sich im Potential was in harmonischer Näherung durch eine Feder zwischen dem Dipol dargestellt wird.

In einem statischen elektrisches Feld geschieht zweierlei:

1. Das Molekül (der Dipol) dreht sich, es richtet sich längs des Felds aus.


2. Die Ladungen erfahren eine statische Kraft, die zur Vergrößerung des Abstands (Dehnung der Feder) führt.

Wirkt Licht, also ein elektrisches Wechselfeld auf den "federverbundenen Dipol" ein, so beginnt dieser


1. zu rotieren und

2. in sich (in der Bindungslänge) zu schwingen. Das Molekül nimmt Rotations- und Schwingungsenergie auf, die dem anregenden elektromagnetischen Feld entstammt. Dabei muss die Lichtenergie(-frequenz, E=hv) gleich der Rotations- und Schwingungsenergie sein.

Übergangsdipolmoment

Voraussetzung für die IR-Anregung ist aber nicht unbedingt ein permanentes Dipolmoments. Es reicht völlig, wenn sich durch die Schwingungsanregung das Dipolmoment (auch vom Wert Null aus) ändert. Beim H₂O (oder bei der CH₂-Gruppe links) ist bereits ein Dipolmoment vorhanden, das sich durch die Schwingungsanregung ändert.

Beim Kohlendioxid ist kein anfängliches Dipolmoment vorhanden. Zwar sind die O-Atome negativ und das C-Atom partial positiv geladen, aber die Polaritäten heben sich auf (Symmetrie!). Dennoch kann die asymmetrische Streckschwingung angeregt werden. Diese besitzt kein *statisches*, wohl aber ein *dynamisches* Dipolmoment. Entsprechendes gilt für die Biegeschwingung (O-C-O Winkel). Und die symmetrische Streckschwingung?

Bilanz und Fragen

- ✓ Voraussetzung für die IR-Anregung eines Schwingungsübergangs ist, dass sich das dynamische Dipolmoment während der Anregung ändert.
- o Für Wasser und Kohlendioxid kann man sich das ja noch zur Not vorstellen, aber bei einem beliebigen Molekül?
 Gibt es da überhaupt eine Chance zu sagen, welche Schwingungen mit IR-Licht angeregt werden können und welche nicht??
 Und kann ich diese letzteren evtl. anders anregen???

Die Antwort ist:

Symmetrie

Ende Kapitel 4