The Hoenl-London factors show the distribution of transition intensities over different rotational branches, i.e. how much the relative percentage of R; P; and Q-Branches is. For diatomic molecules (where Λ corresponds to the ground state and Λ' corresponds to the excited state, DL = Λ' − Λ) one will have:
DL = 0
|
|
|
|
|
|
|
|
SJP = | (J'' + Λ'') (J'' − Λ'') |
J'' |
DL = +1
SJR = | (J'' + 2 + Λ'') (J'' + 1 + Λ'') |
4 (J'' + 1) | |
SJQ = | (J'' + 1 Λ'') (J'' − Λ'') (2J'' + 1) |
4 J'' (J'' + 1) | |
SJP = | (J'' − 1 − L'') (J'' − L'') |
4 J'' |
DL = −1
SJR = | (J'' + 2 - L'') (J'' + 1 − Λ'') |
4 (J'' - 1) | |
SJQ = | (J'' + 1 −Λ'') (J'' + Λ'') (2J'' + 1) |
4 J'' (J'' +1) | |
SJP = | (J'' − 1 −Λ'') (J'' + Λ'') |
4 J'' |