Construction of Hybrid Orbitals

sp-Hybrids

Two new wave functions as linear combination of the functions for 2s and 2pz:

Ψ1  =  a1Ψ2s + b1 Ψ2pz
Ψ2  =  a2Ψ2s + b2 Ψ2pz

abbreviated to:

|i>  =  ai|s> + bi|z>     (i = 1, 2)

The resulting wave functions shall be orthogonal!

<i|k> =  δik

We recieve three equations: <1|1> = 1; <1|2> = <2|1> = 0; <2|2> = 1. In addition, we shall get bonds of the same strength, i.e. the contribution of s is the same for both hybrid orbitals:
ai  =  a

From this, we deduce (a1 = a2).

Thus, we obtain
<1|1> =  a1² <s|s>  + a1 b1 <s|z>  + a1 b1 <z|s>  + b1²  <z|z>

1

0

0

1

<1|1> =  a1² + b1²  =  1
<2|2> =  a2² + b2²  =  1
<1|2> =  a1a2 + b1b2  = 0

and (ai = a)
a1  =  a2

a1² + b1²  =  1
a1² + b2²  =  1
} b1²  =  b2²

b1  =  −b2
For b1 = +b2 is |1> ≡ |2>
a1² + b1b2  =  0     ⇒      a1  =  b1

Inserted in   a1² + b1² = 1     ⇒     2a1² = 1     ⇒     a1 = 1/√2
|1>  =  1/√2(|s> + |z>)
|2>  =  1/√2(|s> − |z>)


sp²-Hybrids

As shown above, it is possible to deduce a description for a sp2 hybrid:

|i>  =  ai |s> + bi |z> + ci |x>     i = 1, 2, 3

In total, 9 coefficients have to be determined:
<i|k>  =  δik 3 + 3 = 6 equations (3 related to normalization, 3 to orthogonality)
ai  =  a    for  i = 1, 2, 3 2 equations
c1  =  0 1 equation (one hybrid orbital is assumed to point in direction z)

|1>  = 1/√3(|s> + √2 |z>
|2>  =  1/√3(|s>−1/√2 |z> + (3/2) |x>
|3>  =  1/√3(|s>−1/√2 |z> − (3/2) |x>


sp³-Hybrids

To describe sp³ hybridization, one hybrid orbital is assumed to have z-orientation, in consequence, the coefficients for |x>, an |y> are zero. The axis of one second hybrid orbital shall (without any limitation of generality) within the x-z-plane. Therefore, the respective coefficient for |y> is zero.

16 unknowns; 4 equations related to normalization , 6 to orthogonality, 3 following ai = a and 3 following the assumptions made with respect to orientation in the coordinate system (c1 = d1 = d2 = 0)
 

|1>  =  ½ |s> + (3/4) |z>
|2>  =  ½ |s >−(1/12) |z> + (2/3) |x>
|3>  =  ½ |s>−(1/12) |z> − (1/6) |x> + 1/√2 |y>
|4>  =  ½ |s>−(1/12) |z> − (1/6) |x> − 1/√2 |y>

A symmetric notation for the four hybrid orbitals is
|1>  =  ½ (|s> + |x> + |y> + |z>)
|2>  =  ½ (|s − |x> − |y> + |z>)
|3>  =  ½ (|s> + |x> − |y> − |z>)
|4>  =  ½ (|s>− |x> + |y> − |z>)

These hybrid orbitals are as well normalized and orthogonal to each other which can be proved easily.

Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.