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Lambert-Beer Law

Transmittance of the sample::

T=1/1, T=esNl=zga

where S [cm?] is an absorption cross section, N[cm™] is a concentration, and
| [cm] is a sample length.

The form which widely used in laboratory practice:

T=10%,

where €[L mol! cm] is the extinction coefficient
and ¢ [mol L] is the molar concentration:

_ Number of molecules N
N,V N,

C

N, is Avogadro number, N, = 6.022 102> mol?
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Low Optical Density Approximation

In case if the exponent factora =S N | is small compared to unity, a<< 1, the

exponential function can be expanded over a. Keeping in this expansion only
first two terms one comes to the important for practice particular case called
low optical density of the sample:

I=1(1-sNI) = (-5)/; =s NI

Frequency shift AV



Why integrated cross section ?

Integrating the cross section <s> = 0S(n)dn over the light frequency n within the
absorption peak, one obtains the integrated cross section <S>:
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(s)=¢ )dn =B,

B,, is the Einstein absorption coefficient and n, is the center of the molecular absorption line.
Thus, the Einstein coefficient B, can be directly determined from experiment.
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Doppler effect

higher frequency - lower frequency
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Molecular motion — frequency (wavelength)
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Detection Techniques

Sensitivity

Dynamic range

Selectivity

Interference (with surounding)
Time resolution

Laser



1.

Properties of Laser Radiation

The laser light can be very monochromatic and can be effectively used for high
resolution spectroscopy. The best results have been obtained for the low pressure
gas lasers: DI /| = 1015,
The laser beam can be of very low divergent (spatial coherence), which means that
its diameter is increased only slowly in space. In principle, with laser beams it is
possible to reach the diffraction limit;
g=2 /pd

Using a lens, it is possible to focus a laser beam on a spot of the diameter:
d=2If/pD=1/2

where, f denotes the focal distance of the lens.

Extremely short laser pulses can be produced. The pulse duration in the nanosecond
(109), picosecond 1012 and femtosecond 10-1° range are now available
commercially. Particularly, femtosecond laser pulses are of great importance,
because they allow to investigate chemical reactions in the real-time domain.

High power output. The continuous CO, lasers are now can produce the high power
output up to 100 kW. These technological lasers are now widely used in industry and
for military. The pulsed lasers, especially those operating in the pico- and
femtosecond time-domain can have the peak power from 10° to 1012 Watt. High
power pulsed lasers are widely used for investigation of nonlinear and multiple
photon processes.
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Detection Techniques



OES: Optical Emission Spectroscopy
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Absorption Spectroscopy
with a Frequency Modulated Laser
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Intracavity Absorption Technique
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CRD: Cavity Ring Down Spectroscopy

CRD spectroscopy . .
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Improvement:

CRD: Cavity Ring Down
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Photoacoustic Spectroscopy
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Fig.6.13. Photoacoustic spectroscopy (a) level scheme (b) schematic experimental ar~
rangement



Photoacoustic Spectroscopy: C,H,

P-branch R-branch

L
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Fig.6.15. Optoacoustic overtone absorption spectrum of acethylene around v = 15600
cm-! corresponding to the excitation of a local mode by 5 quanta vibrations [6.45]
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Laser induced fluorescence (LIF)
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LIF

+ extremely sensitive
+ selective
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Laser induced fluorescence (LIF)
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Laser induced fluorescence (LIF)
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LIDAR: Light Detection And Ranging

LIDAR: A remote-sensing technique
that uses a laser light source to probe
the characteristics of a target:

* Atmosphere control
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Atmospheric OH

e OH is the detergent of the atmosphere (Crutzen)
e For example hydrocarbon [HC]:

dlHCl/ . = -k [HC]-[OH]

lifetime of HC in the atmosphere: T =1/ k [OH]

However, OH concentration around 10°-10% /cm?



OH detection in the lab via LIF
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OH detection in the atmosphere ?

I < OH*(v=1)
\ OH*(v=0)
282nm
> OH 282nm
/ / \ 308 nm
Detektor OH (v=1)
OH (v=0)

O, + hv — O(D) + O, 282nm: s huge, F =0,9
H,O + O(*D) — OH + OH
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Laser Induced Fluorescence: Na,
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Fig.6.34. Laser-induced fluorescence of the Na, molecule excited by argon laser lines
(a) term diagram (b) fluorescence lines with AJ = 0 {Q-lines) emitted {rom the upper
lavel (v'=3, J'=43) of the Blll, state, excited at A = 4B8 nm. (c) P and R doublets,
emitted from the upper level {v'=6, J'=27)

Advantage: very high selectivity. 488 nm line excites a positive /A component

of the v' = 6, J = 43 which emitsonly Q lines. 476,5 nm line excites a negative
A\ component of thev' =6, J' = 27 level which emits P and R lines.



Flugrescence

Laser Induced Fluorescence: NO,
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Molecular Fluorescence Spectroscopy
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Jablonski Diagram

Jablonski Energy Diagram

excited vibrational states
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That's what you usually
find in text books about
absorption/fluorescence of
a molecule:
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lonization Spectroscopy

Absorption of photons on the molecular transition E. — E, is monitored by detection of the
ions or electrons, produced by some means from the molecular excited state E,. The ionization

of the excited molecule may be performed by photons, by collisions, or by an external electric,
or magnetic field.

AAALE SR SN x‘ﬁ \\
ionization autolonizing
_ A
potential 2 level
?"2

21996 B. M. Tiszue
s edis .com

The ionization methods used in molecular spectroscopy and particularly, for determination
of the internal-state distribution in reaction products of chemical reactions are in general
called resonance-enhanced multiphoton ionization (REMPI).



REMPI: Resonant Enhanced Multi-Photon lonisation
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REMPI involves a resonant or
single or multiple photon [e7]
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MALDI: Matrix Assisted Laser
Desorption/lonisation

matrix

A time of flight spectrometry
technique, allowing the

analysis of biomolecules and
large organic molecules gaz phase _| ) <
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A simplified diagram of 1 MADLI apparatus
(After Creel, H., Trends in Polym. Sei., 1993, 1(11), 336-342))
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Raman spectrum of N,
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Scaled signal, fit, deviation / arbitrary units

Raman spectrum
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Rotational Raman Spectroscopy: C,N,
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Fig.8.3. Rotational Raman spectrum of C,N, excited with the 488 nm line of the
argon laser in the experimental setup of Fig.8.2 and recorded on a photographic plate
with 10 min exposure time {8.20]

The general disadvantage of the Raman spectroscopy is very small scattering cross section
which is about 0~ 10-3%cm?. Therefore, the sensitivity of the method is not very high and

the typical experimental problem is detection of a weak signal in the presence of an intense
background radiation.



Surface Enhanced Raman Scattering (SERS)

molecule on
Au surface

SERS is a surface sensitive incident
technique that results in the '
enhancement of Raman
scattering by molecules
adsorbed on rough metal
surfaces. Improvement of the
detection limits by a factor of = .
1012 - 1014_ T o — T —

The excitation laser is selected to be in resonance with the surface absorption
band, or surface plasmon associated with the metal surface. The analyte that
adsorbs in the interaction region is perturbed, leading to enhanced spectral
features. Since SERS is a direct measure of the analyte's bonding structure,
unigue spectral signatures are collected and false positives are minimized.
SERS techniques have permitted trace level detection and identification of
pollutants such as cyanide and pesticides in water supplies.



CARS: Coherent Antistoke Raman Scattering

A (coherent non linear 4 wave

mixing) diagnostic technique used

to determine temperature and

concentration in combustion

processes.
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Electrospray
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Fluorescence Polarization (FP)

Small unbound molecule
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Heterodyne detection

Heterodyne detection is a method of detecting radiation by non-
linear mixing with radiation of a reference frequency. It is commonly
used in telecommunications and astronomy for detecting and

analysing signals.



Lorentz and Doppler Line Shapes
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LASER
Light Amplification by Stimulated Emission
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Laser Induced Fluorescence (LIF)
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Fig.6.33a,b. Laser-induced fluorescence: (a) Level scheme and (b) experimental

arrangement for measuring LIF spectra
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