Laser Detection Techniques

K.-H. Gericke

Institute for Physical Chemistry University Braunschweig

Lambert-Beer Law

Transmittance of the sample::

$$T = I / I_0$$
 $T = e^{-sN/2} = e^{-\alpha}$,

where S $[cm^2]$ is an absorption cross section, N $[cm^{-3}]$ is a concentration, and /[cm] is a sample length.

The form which widely used in laboratory practice:

where e [L mol⁻¹ cm⁻¹] is the extinction coefficient and c [mol L⁻¹] is the molar concentration:

$$C = \frac{Number of molecules}{N_A V} = \frac{N}{N_A}$$

 N_A is Avogadro number, $N_A = 6.022 \ 10^{-23} \ mol^{-1}$

Low Optical Density Approximation

In case if the exponent factor a = s N / is small compared to unity, a<< 1, the exponential function can be expanded over a. Keeping in this expansion only first two terms one comes to the important for practice particular case called low optical density of the sample:

$$= I_0(1 - \sigma N \not) \rightarrow (I - I_o) / I_o = s N /$$

Why integrated cross section ?

Integrating the cross section $\langle \sigma \rangle = \bigcirc \sigma(v) dv$ over the light frequency v within the absorption peak, one obtains the integrated cross section $\langle \sigma \rangle$:

$$\langle \boldsymbol{s} \rangle = \int \boldsymbol{s}(\boldsymbol{n}) d\boldsymbol{n} = B_{12} \frac{h\boldsymbol{n}_0}{c}$$

 B_{12} is the Einstein absorption coefficient and v_0 is the center of the molecular absorption line. Thus, the Einstein coefficient B_{12} can be directly determined from experiment.

Molecular motion – frequency (wavelength)

 $E_2 - E_1 = hn, \quad \lambda = c/n$

Detection Techniques

- Sensitivity
- Dynamic range
- Selectivity
- Interference (with surounding)
- Time resolution

Properties of Laser Radiation

- 1. The laser light can be very monochromatic and can be effectively used for **high resolution spectroscopy**. The best results have been obtained for the low pressure gas lasers: $\Delta\lambda/\lambda \approx 10^{-15}$.
- 2. The laser beam can be of very low divergent (spatial coherence), which means that its diameter is increased only slowly in space. In principle, with laser beams it is possible to reach the diffraction limit:

Using a lens, it is possible to focus a laser beam on a spot of the diameter:

 $d \approx 2 l f / p D \approx l / 2$

where, f denotes the focal distance of the lens.

- 3. Extremely short laser pulses can be produced. The pulse duration in the **nanosecond** (10⁻⁹), **picosecond** 10⁻¹², and **femtosecond** 10⁻¹⁵ range are now available commercially. Particularly, **femtosecond** laser pulses are of great importance, because they allow to investigate chemical reactions **in the real-time domain**.
- 4. High power output. The continuous CO₂ lasers are now can produce the high power output up to 100 kW. These technological lasers are now widely used in industry and for military. The pulsed lasers, especially those operating in the pico- and femtosecond time-domain can have the peak power from 10⁹ to 10¹² Watt. High power pulsed lasers are widely used for investigation of nonlinear and multiple photon processes.

Detection Techniques

OES: Optical Emission Spectroscopy

Absorption Spectroscopy with a Frequency Modulated Laser

 $(I-I_{o})/I_{o} = s N / = Absorbance$ Detection limit A=10⁻³ $s = 10^{-18} cm^{2} / = 10 cm P N = \frac{10^{-3}}{(10^{-18} \cdot 10)} = 10^{4} molecules/cm^{3}$

Detection limit A=10⁻⁶

Intracavity Absorption Technique

Operation close to laser threshold

- + high sensitivity (A=10⁻⁸)
- non linear response
- interference with other absorber within resonator

CRD: Cavity Ring Down Spectroscopy

CRD: Cavity Ring Down

nose components (NIST)

Species	1Hz detection limit [ppb]	λ[nm]
CO ₂	300	1600
CO	300	1566
H ₂ S	100	1600
C ₂ H ₄	50	1620
CH4	0.5	1653
NH ₃	2	1530
H ₂ O	1	1390
HCI	1	1742
HF	0.1	1297

Improvement: $1/_{(1-\text{Reflectivity of mirrors})}$

R=99.999%

Photoacoustic Spectroscopy

Fig.6.13. Photoacoustic spectroscopy (a) level scheme (b) schematic experimental arrangement

Photoacoustic Spectroscopy: C₂H₂

Fig.6.15. Optoacoustic overtone absorption spectrum of acethylene around $\bar{\nu} = 15600$ cm⁻¹ corresponding to the excitation of a local mode by 5 quanta vibrations [6.45]

Laser induced fluorescence (LIF)

IO(v'=2-v''=0) around 445 nm

LIF

- + selective
- calibration
- handling
- costs

Laser induced fluorescence (LIF)

Laser induced fluorescence (LIF)

LIF in a running engine of a car

LIDAR: Light Detection And Ranging

LIDAR: A remote-sensing technique that uses a laser light source to probe the characteristics of a target:

- Atmosphere control
 - Density Temperature Wind Pollution
- Distance, speed measurement
- Rayleigh, Mie scattering
- Raman scattering
- Fluorescence
- Doppler shift

Atmospheric OH

- OH is the detergent of the atmosphere (Crutzen)
- For example hydrocarbon [HC]: $d[HC]/_{dt} = -k [HC] \cdot [OH]$

lifetime of HC in the atmosphere: $\tau = 1/k$ [OH]

However, OH concentration around 10⁵-10⁶ /cm³

OH detection in the lab via LIF

OH detection in the atmosphere ?

 $O_3 + hv \rightarrow O(^1D) + O_2$ 282nm: s huge, F = 0,9 H₂O + O(^1D) \rightarrow OH + OH GEOPHYSICAL RESEARCH LETTERS, VOL. 7, NO. 11, PAGES 905-908, NOVEMBER 1980

IS UV LASER INDUCED FLUORESCENCE A METHOD TO MONITOR TROPOSPHERIC OH ?

G. Ortgies, K.-H.Gericke, F.J.Comes

Institut für Physikalische Chemie, Universität Frankfurt a.M., FRG

Laser Induced Fluorescence: Na₂

Fig.6.34. Laser-induced fluorescence of the Na₂ molecule excited by argon laser lines (a) term diagram (b) fluorescence lines with $\Delta J = 0$ (Q-lines) emitted from the upper level (v'=3, J'=43) of the B¹II_u state, excited at $\lambda = 488$ nm. (c) P and R doublets, emitted from the upper level (v'=6, J'=27)

Advantage: very high selectivity. 488 nm line excites a positive Λ component of the v' = 6, J' = 43 which emits only Q lines. 476,5 nm line excites a negative Λ component of the v' = 6, J' = 27 level which emits P and R lines.

Laser Induced Fluorescence: NO₂

020

Transitions

Molecular Fluorescence Spectroscopy

Jablonski Diagram

Jablonski Energy Diagram

That's what you usually find in text books about absorption/fluorescence of a molecule:

Modern Microscopy is LIF

Ionization Spectroscopy

Absorption of photons on the molecular transition $E_i \rightarrow E_k$ is monitored by detection of the ions or electrons, produced by some means from the molecular excited state E_k . The ionization of the excited molecule may be performed by photons, by collisions, or by an external electric, or magnetic field.

The ionization methods used in molecular spectroscopy and particularly, for determination of the internal-state distribution in reaction products of chemical reactions are in general called resonance-enhanced multiphoton ionization (REMPI).

REMPI: Resonant Enhanced Multi-Photon Ionisation

REMPI involves a resonant single or multiple photon absorption to an electronically excited intermediate state followed by another photon which ionizes the atom or molecule.

MALDI: Matrix Assisted Laser Desorption/Ionisation

A time of flight spectrometry technique, allowing the analysis of biomolecules and large organic molecules

A simplified diagram of a MADLI apparatus (After Creel, H., Trends in Polym. Sci., 1993, 1(11), 336-342.)

ANR MYCH MOBE TECHNIQUES.....

Enough is enough

Thank you

Raman

Raman spectrum of N₂

Raman spectrum

Rotational Raman Spectroscopy: C₂N₂

Fig.8.3. Rotational Raman spectrum of $C_2 N_2$ excited with the 488 nm line of the argon laser in the experimental setup of Fig.8.2 and recorded on a photographic plate with 10 min exposure time [8.20]

The general disadvantage of the Raman spectroscopy is very small scattering cross section which is about $\sigma_{sc} \sim 10^{-30}$ cm². Therefore, the sensitivity of the method is not very high and the typical experimental problem is detection of a weak signal in the presence of an intense background radiation.

Surface Enhanced Raman Scattering (SERS)

SERS is a surface sensitive technique that results in the enhancement of Raman scattering by molecules adsorbed on rough metal surfaces. Improvement of the detection limits by a factor of $10^{12} - 10^{14}$.

The excitation laser is selected to be in resonance with the surface absorption band, or surface plasmon associated with the metal surface. The analyte that adsorbs in the interaction region is perturbed, leading to enhanced spectral features. Since SERS is a direct measure of the analyte's bonding structure, unique spectral signatures are collected and false positives are minimized. SERS techniques have permitted trace level detection and identification of pollutants such as cyanide and pesticides in water supplies.

CARS: Coherent Antistoke Raman Scattering

A (coherent non linear 4 wave mixing) diagnostic technique used to determine temperature and concentration in combustion processes.

Electrospray

the droplets

Heterodyne detection

Heterodyne detection is a method of detecting radiation by nonlinear mixing with radiation of a reference frequency. It is commonly used in telecommunications and astronomy for detecting and analysing signals.

LASER

Light Amplification by Stimulated Emission

Nobel Prize, 1964 C.H. Townes, N.G. Basov, and A.M. Prokhorov

 $A_{21} / B_{12} = 8 \text{ph}^{n^{3}} / c^{3}$

For instance, for the wavelength of 500 nm the ratio between the intensities of the spontaneous and stimulated transitions is $F = e^{96} = 5 \frac{1}{2} 10^{41} !$

Quantum Beat Spectroscopy

Laser Induced Fluorescence (LIF)

Fig.6.33a,b. Laser-induced fluorescence: (a) Level scheme and (b) experimental arrangement for measuring LIF spectra

