Molecular Spectroscopy.
Born-Oppenheimer Approximation
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Spectral range of rotational, vibrational,

and electronical motion
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Rotational spectra are in the microwave region
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The rotational spectrum of the Orion Nebula identifies molecules in the cloud.

(G. A. Blake et al., Astrophys. J. <B>315</B> (1987) 621.)




Rotational Energy (classical)

Classical mechanics, one particle:




Moments of Inertia

I =2 my R?sin? ¢

In any molecule there are three General Axes of Inertia. They are
perpendicular to each other and cross each other in the
Molecular Center of Inertia.



Classification of the Moments of Inertia

=1, 1.=0

Spherical < W ISR cH.. cCl,: tetrahedral
totar I )a ) SF,: octahedral
' L=lg= 1=

Symmetric

rotor _ -— 1 = NH;, CH;l, CoHg:
h=lg=1 #l.=1

Asymmetric I,:

rotor :
‘ H,0, NO,, H,CO, CH,OH
| I, #Ig # 1

Comment: quite often ,,rotor* 1s called ,,top*. Thus, we have a
spherical top, a symmetric top, ....

Diatomics, CO,, N,O, C,H.:



Spherical Rotor: I,=lg=1.=1

in Quantum Mechanics J p— th (.J + 1) J=0,1.2,..

Note that | in Classical Mechanics represents the angular
momentum, while in Quantum mechanics it‘s just a number.

Rotational constant

E, =27hcBJI(J +1)
Rotational term: F (.J ) =BJ (J + 1)




Symmetric Rotor: I,=lg=1,I.=1,1 #1,

|, > |, — prolate rotor, |, <1, — oblate rotor

where |2 =], [y + | 2
In quantum mechanics J> — h? J(J+1) and J. - h K

Therefore, the rotational term 1s given by:

F,=BJ(J+1)+(A-B)K’

where A and B are two rotational constants:




Symmetric Rotor: the role of the quantum
numbers K and M,

F(J) = BJ(J+1) + (A — B)K?

The role of the quantum number K The role of the quantum number M,



Symmetric Rotor: particular cases
K| =]
F «=B-]+AJ2~ A J2
K| =0
F,=B-)(+1)

This is the case for diatomic molecules



Elastic Rotor

F,~B-](+1) -D-J2(J+1)* + ---

where the constant D << B. D is called centrifigural distortion constant



Asymmetric Rotor
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Rotational Spectrum

The electric dipole moment I must be nonzero! —
The molecule must be polar — homonuclear diatomic
molecules and spherical tops have no rotational spectra

General Selection Rules:

AJ =%1 AM, =0, +1

AJ = 1 absorption
AJ = -1 (induced) emission

IR e Additional Selection Rule for a symmetric top:
AK =10
Transition frequency

v(J)=B-(J+1)(J+2) — B-J(J+1) =2B(+1)
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Av = 2B

Usually B ~ 0.1 — 10 ecm! and the corresponding transitions lie in the microwave spectral region



Intensity of the Rotational Spectrum

1=Cgy (N, =N,V "M, D, [v. .M, )

FrequenCy

Where gy is the degeneracy of the
state |v, J, M;>: g, = 2]+1

Transmission



Vibrational Movement in Molecules.
Harmonic Oscillator

Point weight on a spring Diatomic molecule
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Diatomic Molecule Energy Levels

Potential
energy, V 10
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Potential energy, V

K large

k small

0

Displacement, x




Harmonic Oscillator: the Wavefunctions

H, are the Hermite polynomials:
Hy(z) =1, H,(2) = 2z, H,(2) = 2z2- 2, H,(z) = 822 - 12z, etc.

1




Vibrational Energy Levels of a Diatomic Molecule

Necessary condition for vibrational transitions:
a molecule must have a permanent dipole moment

+1 — the fundamental line
Unharmonic oscillator: Av =v'-v'"'=* 2 +3, £ 4 ... > harmonics

Selection rule for harmonic oscillator: Av = v' - v"
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Morse Potential

V(R)=D, (1 - 27"’

E, = (V+'%) o, - (v+'%)?0,2x2+(v+'A) el + higher terms, v=0,1,2...

Note: the higher term (0,2x,2) is not a product, it’s just a constant, (the same is true for ®3y,2 ,...). In same handbooks
these constants are defined as: ® X, ®.Ye;-.-

ee’

energy (eV)

3.0 4.0 5.0

R (A)

Copyright 2000 B.M. Tissue



Vibrational-Rotational Transitions

Selection rules for vibrational-rotational transitions: AJ =0, + 1; AM; =0, +1
J-J=-1 — P rotational branch, AS~ w,—2B_]
J-J= 0 — Qrotational branch, AS = w_ (exist only for K # 0 states)

rP-J=1 — R rotational branch, AS = w_ + 2 B  (J+1)

T Q-branch 1H37C|
..... 1H350|

(b}
8 :
I P-branch R-branch
o
o
o]

2800 3000 v/iem™

S ]) = G(¥) + F(Q) = (v +¥2) o (v #/)?02x2 + JJ+1) B, PJ+1)?D,+ -



Vibrational-Rotational Transitions

Molecular
absorption
on
excitation

Frequency of
absorbed radiation
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Molecular energy and wave function: H," ion

Coordinate system Schrédinger equation: JERgEyalY

a:<‘PA\H\‘I’A>=<‘PB\H\‘PB> Coulomb Integral

Molecular wavefunction

,3:<\{1A‘|-| Py ) = <\PB‘H EM] Exchange Integral

S :<‘PA ‘ ‘PB> Overlap Integral F=C,¥,+Cs Ty




H,* ion: Solutions

Energies

El:a+,8 Ez:a'—,B

1+S 1-S

a <0
£ <0

Wavefunctions: o molecular orbitals

¥ =N[W,(r,) - ¥, (r)]

¥ = N[, (ry)+ P, ()]

Bonding Molecular Orbital Antibonding Molecular Orbital

Normalization Factor



H,* ion: Bonding Orbital

Y. =N [qu(rA) + LPB(rB)]

Bonding o orbital:

Amplitude representation

Boundary Contour plot representation

SLEace \
| l) Three-dimensional sketch

Nuclei



H,* ion: Antibonding Orbital

Antibonding o” orbital: Y =N [‘PA(I’AI) — LI’B(FBI)]

Amplitude representation

Electron density: |V |2

Contour plot representation



H,* ion: complete description

Region of
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E, = (a+)/(1+S) E, = (a-B)/(1-S)

The o orbitals have cylindrical symmetry with respect to the
molecular axis



Linear Combination of Atomic Orbitals (LCAO):
Homonuclear Diatomic Molecules

Each molecular orbital is presented as a linear
combination of atomic orbitals of an appropriate
symmetry

\P(Q) — Z Ci¢i (CI)

Symmetry of one-electron molecular orbitals

1. Electron axial angular momentum: ; -4 7 p A =0, 1, 2, 3,...
‘ Orbital o, w, &, O, ...

2. Inversion of the electron wave function in the molecular center of symmetry:

Region of
destructive

Region of d :
constructive u n g e ra e interference

interference




Aufbau Principles

With the one-electron orbitals established, we can deduce the ground state
configuration of a multi-electron molecule by adding an appropriate number of
electrons to the orbitals following the Aufbau principles:

 Electrons occupy different orbitals approximately in the order of their
energies

* Only two electrons can occupy any non-degenerate orbital

 An atom, or a molecule in its ground state adopts a configuration with the
greatest number of unpaired electrons (Hund's maximum multiplicity rule)



Wolfgang Ernst Pauli

Nobelpreis 1945

*25. April 1900 in Wien
+ 15. Dez. 1958 in Zurich




Orbital Energy Level Diagrams for Period 1
Diatomic Molecules

Configuration: 1o 102 10,210, 10,210,*2

0y=N; (P + D) 0%, =N, (Py-Pg)
where ®,, ®; are atomic 1s orbitals

H,: W =0,(1) 04(2)
He,: W, =0,(1)0,(2)0*,(3) o*,(4)

_ antibonding MO

bonding MO




Bonding Order
A measure of the net bonding in a diatomic molecule is its bond order, b:
b = "2(n - n¥)

where n is the number of electrons in the bonding orbitals and n* is the number
of electrons in the antibonding orbitals.

Examples:
*H, b=1, asingle bondH --H,

*He, b=0, no bond at all.



Period 2 Diatomic Molecules:
Liz, Bez, B2, Cz, Nz, 02, F2, Ne2

All these atomic orbitals have cylindrical symmetry with respect to the
molecular axis and can interact with each other

S+S

p,*s

P, * P,




Period 2 Diatomic Molecules: o orbitals

In general W, = Cprs Ppps + Cpys Py t CA2pz ¢A2pz wr CB2pz (Dszz

Let us assume that Z axis is parallel to the internuclear axis R
Only 2s and 2p, atomic orbitals

can interact producing
molecular o orbitals.

Sometimes, the 2s and 2p, orbitals can be treated separately, as they distinctly different
energies. Then, two 2s orbitals of the two atoms overlap with each other giving a pare of
o4 and c,* molecular orbitals and two 2p, orbitals overlap with each other giving another
pair of 6, and c,,* molecular orbitals.



Period 2 Diatomic Molecules: 0 and &t orbitals

These atomic orbitals have different symmetry and
cannot interact with each other

region of
constructive
/ overlap

s + p,

\ region of

destructive
overlap

P, *+ Py




Period 2 Diatomic Molecules: it orbitals

2p, and 2p, orbitals of both atoms oriented to the same side can produce
bonding r, and antibonding m,* molecular orbitals. The n2p, and n2p, orbitals

have the same energy, thus =, and =" orbitals can be populated by the
maximum four electrons.

o orbitals nt orbitals



Parity of the n orbitals

2p =, bonding MO 2p , anti-bonding MO

That is, the bonding 7 orbitals are ungerade (u), while the
antibonding 7 orbitals are gerade (g) with respect to the inversion
of all electronic coordinates in the molecular center of symmetry



Electron Structure of the Period 2
Homonuclear Diatomic Molecules




Heteronuclear Diatomic Molecules:
Polar Bonding

The one-electron wavefunction can still
be written as linear combination of
atomic orbitals (LCAO):

Y =c®y+ cp O

One-electron energy levels in HF

lonization limit

Aufbau principles

1. The energies of the interacting atomic
orbitals ®, and ®; must be close to
each other

2. The symmetry of the interacting atomic
orbitals must be the same

3. The overlap of the atomic orbitals @,
and @ must be large.

In case of HF, |c,|? < |cg|?, which results in
the polar bonding and manifests itself in
the nonzero value of the molecular electric

dipole moment.




Heteronuclear diatomic molecules : HF

Details on the molecular bonding energies and molecular wavefunctions:

Antibonding orbital

13.—

H

Nonbonding orbital 1 2p,, 2p #

Bonding orbital ‘OO —H—

Nonbonding orbital 1o

Electron configuration: (10)2(20)2(1n)*: X



Born-Oppenheimer Approximation:
Electronic transitions in molecules

Transition probability

W oc(k e, |0)]" E
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E,-E,=hv, A=°%/y



Molecular Fluorescence Spectroscopy

Exclted
State (Sy)

Fluorescencs




Electronic Transitions

ratational electronic
level E » excited stateE‘ﬂ

vibrational

electronic ground
rotational state E" |

=3
7 vibrational
i level E"

vib




Jablonski Diagram

excited vibrational states
{excited rotational states not shown)

A = photon absorption

F =flucrescence {emission)
P =phosphorescence

S = singlet state

T =triplet state

IC =internal conversion
ISC =intersystem crossing




Electronic Transitions: transition frequency
E=E,+E; +E,
Energy: w=T, + o, (vt2) +B_JJ+1),

where T_ is the minimum of the potential curve

Wave function: W =W P vib ot

Transition frequency:

Aw = Te' — Te"+ we' (V'+1/z) — ooe" (v'"'+Y%%) +BV' J'(J'+1) — BV" J'g'"+1)
=gt oy, T o

Usually: w4 » w4 » 0,



Quantum numbers of electronic states
for diatomic molecules

1. A projection of the electronic orbital angular momentum L onto the internuclear axis
2. S total electron spin
3. X projection of the electron spin S onto the internuclear axis
4. Q = A+ X projection of the total angular momentum J onto the internuclear axis
5. o= %1, index of reflection of the electronic wave function in the plain (only for £ =0 states)
6. g,u inversion of the electron wavefunction in the molecular center (only for homonuclear mol.)
Usually electronic states ate written as: 254N, , or BHIALC or 2SHAg u
ALSO:

The states with A=0,1,2 are written: X, I'l, A

states, respectively.
The states with S=0 are named singlets
The states with S=1 are named triplets




Selection rules for electronic transitions
In diatomic molecules

Allowed transitions Examples
AVAN (= > X I« TI1,
X1 A Il
AS =0 1Y« 1331 > T,
3 > T A > T
+ «— + >t 2T
_ 2> 2

g u XX Y < I




Selection rules for rotational quantum
number J in electronic transitions

Electronic |Allowed Name
transition transitions

X2 (AJ=1 R-branch
AJ =-1 P-branch

All others |AJ =1 R-branch
AJ =0 Q-branch

AR | P-branch




Electronic Transitions:
Franck-Condon factors

No selection rule for the vibrational
quantum number v in electronic
transitions:

v ‘- v = any integer.

‘I’ = ‘ye‘ljv‘yr ot

W~ | <W|p, | W>|2 =

R <W | W2 [ <P | | W > |2

/

Frank-Condon integral




Rotational Structure of Electronic Transitions

10 11
band head band head
Red shadowed Blue shadowed




Dissociation and Predissociation

- Continuum
- Dissociation

limit
£ ’)

- Continuum

- Dissogiation
limit

~—/ Continuum,
Y unbound

= WS




Multiphoton Transitions

Photon scattering on a molecule:

hVi + M(E|) - hvs + M(Es)

Stokes anti-

radiation Stokes
radiation

If v, =v_, it’s called Rayleigh Scattering
If v,>v_, it’s called Stokes Scattering
If v, <v,, it’s called anti-Stokes Scattering

In general, the transition for each of the two photons is not
tesonance: E —E.# hv,, E —E.# hyv_and the corresponding
upper energy state is said to be virtual.



Raman Scattering in Molecules

The molecule where the two-photon Raman transitions can occur must possess the
anisotropic polarizability. This means that under influence of a strong laser radiation £
the molecule acquires an induced electric dipole moment:
HMing — & E

Most of the homogeneous and heterogeneous diatomic molecules possess the anisotropic
polarizability, they are is said to be the Raman active. However all atoms are spherically
symmetric and therefore they are not Raman active. The selection rules for pure rotational
Raman transitions in molecules are as follows:

Linear rotors: AJ =0, * 2.

Symmetric rotors: AJ=0,+ 1, £2; AK=0.

Spherical rotors: are not Rahman active

The A J = 0 pure rotational transitions does not change the frequency of the scattering
radiation and therefore they contribute only to the Rayleigh Scattering.

For ro-vibrational Raman transitions the selection rules for the quantum number | are the
same as above. The Raman transitions between the states with Av = 1 contribute to the
Stokes Scattering, the Raman transitions between the states with Av = -1 contribute to the

anti-Stokes Scattering. The AJ = 0 transitions are named Q- branch, the AJ = -2
transitions are named O —branch, and the AJ = 2 transitions are named S—branch.



Chandrasekhara Venkata Raman

Chandrasekhara Venkata Raman

* 7. Nov. 1888 in Trichinopoly (India)
+ 21. Nov. 1970 Karnataka (India)
1930 Nobel price for Physics




Quantum-Mechanical treatment of the Raman Scattering
and Two-Photon Absorption
The probability of Raman scattering:

(f i )i 2] )]

w, — o, +11; 12\, + @, 117 /2

where the constant C, is proportional to the squire of the
light intensity.

A similar effect is the two-photon absorption in
atoms, molecules, and condensed phase

The probability of the tow-photon absorption is usually
several orders of magnitude smaller than the probability
of the one-photon absorption. Therefore, for observation
of the two-photon absorption the laser beam is usually
focused on the sample, thus achieving the necessary

high density of the electromagnetic radiation.

REMPI 2 +1



Raman Spectroscopy of Rotational
Molecular States

Detector

-_ 1
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