
Molecular Spectroscopy. 
Born-Oppenheimer Approximation

Potential energy curves

Ψtot

 

= Ψel

 

Ψvib

 

Ψrot

Etot

 

= Eel

 

+ Evib

 

+ Erot

(Motions
 

are
 

independant)

(Eel

 

>> Evib

 

>> Erot

 

)



Spectral
 

range
 

of rotational, vibrational, 
and electronical

 
motion



The
 

rotational
 

spectrum
 

of the
 

Orion Nebula
 

identifies
 

molecules
 

in the
 

cloud.
(G. A. Blake et al., Astrophys. J. <B>315</B> (1987) 621.)

Rotational spectra are in the microwave region 



Rotational Energy (classical)

using  Jk

 

= Ik

 

ωk   we get:
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where A, B, and C are principal axes of rotation and 

2rmI  is the moment of  inertia

Classical mechanics, one particle:
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Moments of Inertia

H2
 

O
Ia

 

= 2 mH

 

R2 sin2

 


In any molecule there are three General Axes of Inertia. They are 
perpendicular to each other and cross each other in the 
Molecular Center of Inertia.   



Classification of the Moments of Inertia
Diatomics, CO2

 

, N2

 

O, C2

 

H2

 

:
IA = IB

 

, IC
 

= 0

CH4

 

, CCl4
 

: tetrahedral 
SF6

 

:           octahedral
IA

 

= IB
 

= IC = I

NH3

 

, CH3

 

I, C6

 

H6

 

:

IA
 

= IB
 

= I
 

≠
 

IC
 

= I||

H2

 

O, NO2

 

, H2

 

CO, CH3

 

OH

IA
 

≠
 

IB
 

≠
 

IC

Comment: quite
 

often
 

„rotor“
 

is
 

called
 

„top“. Thus, we
 

have
 

a 
spherical

 
top, a symmetric

 
top, ….



Spherical  Rotor: IA = IB = IC = I
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Note that
 

J in Classical
 

Mechanics
 

represents
 

the
 

angular
 momentum, while

 
in Quantum mechanics

 
it‘s

 
just a number.



Symmetric Rotor:  IA = IB
 

= I
 

,
 

IC
 

= I‖,  
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where  J2

 
= JA

2 + JB
2

 
+ JC

2

In quantum mechanics J2

 
→ ħ2

 
J(J+1) and JC

 

→ ħ K

Therefore, the rotational term is given by:  
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where A and B are two rotational constants:
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I
 

> I‖
 

→ prolate
 

rotor, I
 

< I‖
 

→ oblate rotor 



Symmetric Rotor:  the role of the quantum 
numbers K and MJ

The role of the quantum number MJThe role of the quantum number K

F(J) = BJ(J+1) + (A –
 

B)K2



|K| = 0

|K| ≈
 

J

FJ, K

 

= B· J + A·J2  ≈
 

A·
 

J2

This is the case for diatomic molecules

Symmetric Rotor:  particular cases

FJ

 

= B· J (J+1)



Elastic Rotor

FJ

 

≈ B· J (J+1)  -
 

D·J2(J+1)2 + ···

where  the constant D ≪ B.  D is called centrifigural
 

distortion constant



Asymmetric Rotor



Rotational Spectrum

Additional Selection Rule for a symmetric top:

The electric dipole moment µ
 

must be nonzero!  →
The molecule must be polar → homonuclear

 
diatomic 

molecules and spherical tops have no rotational spectra

ΔJ =±1 ΔMJ = 0, ±1

ΔJ =   1  absorption
ΔJ = -

 
1  (induced) emission

General Selection Rules:

ΔK = 0

Transition frequency

(J) = B·(J+1)(J+2)  –

 
B·J(J+1) = 2B(J+1)

Δ
 

= 2B

Usually B ~ 0.1 –
 

10 cm-1 and the corresponding transitions lie in the microwave spectral region



Intensity of the Rotational Spectrum

Where gJ

 

is the degeneracy of the 
state |v, J, MJ > : gJ

 

= 2J+1
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Vibrational
 

Movement in Molecules. 
Harmonic Oscillator
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Diatomic molecule

Reduced mass:

μ
 

= mA

 

mB

 

/(mA

 

+mB

 

)

Point weight on a spring



Diatomic Molecule Energy Levels

Ev
 

= (v + ½) ħ ω,    v = 0,1,2,…
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Harmonic Oscillator: the Wavefunctions
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Vibrational
 

Energy Levels of a Diatomic Molecule

Ev

 

= (v+½) ωe ,   ωe

 

= 1/2c

 

(k/µ
 

)½

 

[cm-1]
 

Ev

 

= (v + ½) ωe

 

+ (v + ½)2 ωe
2xe

2

 

+ ···

Selection rule for harmonic oscillator: Δv = v' -

 
v'' = ±1  →

 
the fundamental line

unharmonic

 
oscillator:

 
Δv = v' -

 
v'' = ±

 
2, ±

 
3, ±

 
4 …

 
→

 
harmonics

Necessary condition for vibrational

 
transitions: 

a molecule must have a permanent dipole moment



Morse Potential
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Ev

 

=
 

(v + ½) e

 

-
 

(v + ½)²
 

e
2xe

2

 

+ (v + ½)³
 

e
3ye

3

 

+ higher terms,       v=0,1,2…
Note: the

 

higher

 

term

 

(e
2xe

2)

 

is not a product, it’s just a constant, (the same is true for

 

e
3ye

3

 

,…). In same handbooks 
these constants are defined as: e

 

xe

 

, e

 

ye

 

,…



Vibrational-Rotational Transitions
Selection rules for vibrational-rotational transitions:

 
ΔJ =0, ±

 
1; ΔMJ

 

= 0, ±1

J’

 
–

 
J = -

 
1    →

 
P  rotational branch,   ΔS ≈ ωe – 2 Bv

 

J

J’

 
–

 
J =   0   →

 
Q rotational branch,   ΔS ≈ ωe

 

(exist only for K ≠

 
0 states)

J’

 
–

 
J =   1   →

 
R rotational branch,  ΔS ≈ ωe

 

+ 2 Bv

 

(J+1)

S(v, J) = G(v) + F(J) = (v +½) ωe

 

– (v +½)²

 
ωe

 

²xe

 

²

 
+  J(J+1) Bv

 

– J2(J+1)2 Dv

 

+ ···



Vibrational-Rotational Transitions



Molecular energy and wave function: H2
+

 
ion 
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H2
+

 
ion:  Solutions

Wavefunctions: 
 

molecular orbitals
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H2
+

 
ion: Bonding Orbital  

Bonding σ
 

orbital:

Amplitude representation

Contour plot representation

 )()( BBAA rrN 

Three-dimensional sketch



H2
+

 
ion: Antibonding

 
Orbital 

Antibonding
 

σ*

 

orbital:

Amplitude representation

Contour plot representation

Electron density: |Ψ-

 

|2

 )()( 11 BBAA rrN 



H2
+

 
ion: complete description  

2σu
*

 

orbital1σg

 

orbital

H

Eu

 

= (α-β)/(1-S)Eg

 

= (α+β)/(1+S)

The σ
 

orbitals
 

have cylindrical symmetry with respect to the 
molecular axis 



Linear Combination of Atomic Orbitals
 

(LCAO):
Homonuclear

 
Diatomic Molecules 


i

ii qcq )()(  Each molecular orbital is presented as a linear 
combination of  atomic orbitals

 
of an appropriate 

symmetry 

Symmetry of one-electron molecular orbitals

lz
 

= ±
 

 ħ

2. Inversion of the electron wave function in the molecular center of symmetry:

 = 0,  1,  2,  3, …
Orbital  ,  ,   ,  ,

 
…

1. Electron axial angular momentum:

gerade ungerade

g u



Aufbau
 

Principles 

• Electrons occupy different orbitals
 

approximately in the order of their
energies

• Only two electrons can occupy any non-degenerate orbital 

• An atom, or a molecule in its ground state adopts a configuration with the
greatest number of unpaired electrons (Hund's

 
maximum multiplicity rule)

With the one-electron orbitals
 

established, we can deduce the ground state 
configuration of a multi-electron molecule by adding an appropriate number of 
electrons to the orbitals

 
following the Aufbau

 
principles:



Wolfgang Ernst Pauli Wolfgang Ernst Pauli 

* 25. April 1900 in Wien
 + 15. Dez. 1958 in Zürich

Nobelpreis 1945



He2

 

:    Ψg ≈ σg

 

(1) σg

 

(2)
 

σ*u

 

(3) σ*u

 

(4)

σg = Ng

 

(ΦA + ΦB

 

)
 

σ*u

 

= Nu

 

(ΦA -
 

ΦB

 

)

where ΦA

 

, ΦB

 

are atomic 1s orbitals

Orbital Energy Level Diagrams for Period 1 
Diatomic Molecules 

H2

 

:  Ψg ≈ σg

 

(1) σg

 

(2)

Configuration:       1σg

 

1σg
2

 

1σg
2 1σu

 

*             1σg
2 1σu

 

*2



Bonding Order 
A measure of the net bonding in a diatomic molecule is its bond order, b:

b
 

= ½(n
 

-
 

n*)

where n
 

is the number of electrons in the bonding orbitals
 

and n* is the number 
of electrons in the antibonding

 
orbitals. 

Examples: 

• H2

 

b = 1,  a single bond H --
 

H,

• He2

 

b = 0,   no bond at all.



Period 2 Diatomic Molecules: 
Li2

 

, Be2
 

, B2
 

, C2
 

, N2
 

, O2
 

, F2
 

, Ne2

pz
 

+ pz

All these atomic orbitals
 

have cylindrical symmetry with respect to the 
molecular axis and can interact with each other

s + s

pz
 

+ s



Period 2 Diatomic Molecules: σ
 

orbitals

Ψσ

 

= CA2s

 

ΦA2s

 

+ CB2s

 

ΦB2s

 

+ CA2pz

 

ΦA2pz

 

+  CB2pz

 

ΦB2pz

Only 2s and 2pz

 

atomic orbitals
can interact producing    
molecular σ

 
orbitals.

Let us assume that
 

Z axis is parallel to the internuclear
 

axis
 

R

In general:

Sometimes, the 2s and 2pz orbitals
 

can be treated separately, as they distinctly different 
energies. Then, two 2s orbitals

 

of the two atoms overlap with each other giving a pare of 
g and u

 

* molecular orbitals
 

and two 2pz

 

orbitals
 

overlap with each other giving another 
pair of g

 

and u

 

* molecular orbitals.



Period 2 Diatomic Molecules: σ
 

and 
 

orbitals
These atomic orbitals

 
have different symmetry and 

cannot interact with each other 

pz
 

+ px

s + px



Period 2 Diatomic Molecules: 
 

orbitals



 
orbitalsσ

 
orbitals

2px and 2py orbitals
 

of both atoms oriented to the same side can produce 
bonding u and antibonding

 
g

 

* molecular orbitals. The 2px and 2py orbitals
 have the same energy, thus u

 

and g

 

* orbitals
 

can be populated by the 
maximum four electrons. 



That is, the bonding
 


 

orbitals
 

are
 

ungerade
 

(u),
 

while the 
antibonding

 


 
orbitals

 
are gerade

 
(g)

 
with respect to the inversion 

of all electronic coordinates in the molecular center of symmetry

Parity of the 
 

orbitals



Electron Structure of the Period 2 
Homonuclear

 
Diatomic Molecules



Heteronuclear
 

Diatomic Molecules: 
Polar Bonding

One-electron energy levels in HF The one-electron wavefunction
 

can still 
be written as linear combination of 
atomic orbitals

 
(LCAO):



 
= cH

 

H

 

+ cF

 

F

Aufbau
 

principles 
1. The energies of the interacting atomic 

orbitals
 

H

 

and  F

 

must be close to 
each other 

2. The symmetry of the interacting atomic 
orbitals

 
must be the same 

3. The overlap of the atomic orbitals
 

H

 
and F must be

 
large. 

In case of HF, |cH

 

|2  < |cF

 

|2,
 

which results in 
the polar bonding and manifests itself in 
the nonzero value of the molecular electric 
dipole moment. 



Heteronuclear
 

diatomic molecules : HF
Details on the molecular bonding energies and molecular wavefunctions:

Electron configuration:    (1σ)2 (2σ)2 (1)4 :    1Σ

H

F

Nonbonding orbital

Nonbonding orbital 

Bonding orbital

Antibonding
 

orbital



Born-Oppenheimer Approximation: 
Electronic transitions in molecules 

E2 – E1 = h,     λ
 

= c/

Transition
 

probability

22
0 0 zzk EkW 

  dqk zkz 0
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
i

ii rq 

in general 



Molecular Fluorescence Spectroscopy



Electronic Transitions 



Jablonski
 

Diagram



Electronic Transitions: transition frequency 

E = Eel + Evib

 

+ Erot

Transition frequency:        

Δω

 
= Te

 

' –

 
Te

 

''+ ωe

 

'

 
(v'+½) –

 
ωe

 

'' (v''+½)

 
+Bv' J'(J'+1) – Bv

 

''  J''(J''+1)
= ωel

 

+ ωvib

 

+ ωrot

Usually:  ωel

 

»

 
ωvib

 

»

 
ωrot

Energy:        ω

 
= Te

 

+ ωe (v+½) +Bv

 

J(J+1), 

where Te

 

is the minimum of the potential curve

Wave function:    Ψ = Ψn
el

 

Ψv
vib

 

ΨJ
rot



Quantum numbers of electronic states 
for diatomic molecules 

1.

 
Λ

 
projection of the electronic orbital angular momentum L

 
onto the internuclear

 
axis

2.

 
S

 
total electron spin

3.

 
Σ

 
projection of the electron spin S

 
onto the internuclear

 
axis

4.

 
Ω = Λ

 
+ Σ

 
projection of the total angular momentum J

 
onto the internuclear

 
axis  

5.

 
σ

 
= ±1, index of reflection of the electronic wave function in the plain

 
(only for Ω

 
=0 states)

6.

 
g, u

 
inversion of the electron wavefunction

 
in the molecular center (only for homonuclear

 
mol.) 

Usually electronic states are written as:       2S+1ΛΩ

 

,  or   2S+1ΛΩ
σ,   or   2S+1Λg,u

ALSO:
The states with Λ=0,1,2

 
are written: Σ, Π, Λ

states, respectively.
The states with S=0

 
are named singlets

The states with S=1

 
are named

 
triplets



Selection rules for electronic transitions 
in diatomic molecules 

Allowed transitionsAllowed transitions ExamplesExamples

ΔΛΔΛ
 

= 0, = 0, ±±11 ΣΣ
 

↔↔ ΣΣ, , ΠΠ
 

↔↔ ΠΠ,    ,    
ΣΣ

 
↔↔ ΠΠ, , ΔΔ

 
↔↔ ΠΠ

ΔΔS = 0S = 0 11ΣΣ
 

↔↔ 11ΣΣ, , 33ΠΠ
 

↔↔ 33ΠΠ,     ,     
33ΣΣ

 
↔↔ 33ΠΠ, , 11ΔΔ

 
↔↔ 11ΠΠ

+ + ↔↔ ++
––

 
↔↔ ––

ΣΣ++

 
↔↔ ΣΣ++

ΣΣ--

 
↔↔ ΣΣ--

g g ↔↔ uu ΣΣgg

 

++

 
↔↔ ΣΣuu

 

++, , ΣΣgg

 

↔↔ ΠΠuu



Selection rules for rotational quantum 
number J in electronic transitions           

Electronic Electronic 
transitiontransition

Allowed Allowed 
transitionstransitions

NameName

ΣΣ
 

↔↔ ΣΣ ΔΔJ = 1J = 1

ΔΔJ = J = ––11

RR--branchbranch

PP--branchbranch

All othersAll others ΔΔJ = 1J = 1

ΔΔJ = 0J = 0

ΔΔJ = J = ––
 

11

RR--branchbranch

QQ--branchbranch

PP--branchbranch



Electronic Transitions: 
Franck-Condon factors

No selection rule for the vibrational
quantum number v

 
in electronic 

transitions:   
v ‘ - v = any integer.

Ψ = Ψe

 

Ψv

 

Ψrot

W ~ |<Ψf

 

|μZ

 

|Ψi

 

>|2 ≈

≈ |<Ψv’

 

|Ψv

 

>|2 |<Ψe’

 

ΨJ’

 

|μZ

 

|Ψe’

 

ΨJ

 

>|2

Frank-Condon integral



Rotational Structure of Electronic Transitions

Red shadowed                       Blue shadowed 



Dissociation and Predissociation



Multiphoton
 

Transitions
Photon scattering on a molecule:

hνi

 

+ M(Ei

 

) → hνs + M(Es

 

)

If  νi

 

= νs ,
 

it’s called Rayleigh
 

Scattering
If  νi

 

> νs ,  it’s called Stokes Scattering
If

 
νi

 

< νs ,
 

it’s called anti-Stokes Scattering

In general, the transition for each of the two photons is not 
resonance: Ev

 

– Ei

 

≠
 

hνi

 

, Ev

 

– Ef

 

≠
 

hνs

 

and the corresponding 
upper energy state is said to be virtual.  



Raman Scattering in Molecules 
The molecule where the two-photon Raman transitions can occur must possess the 
anisotropic  polarizability. This means that under influence of a strong laser radiation Е
the molecule acquires an induced electric dipole moment:

μind

 

= α
 

E
Most of the homogeneous and heterogeneous diatomic molecules possess the anisotropic  
polarizability,

 
they are is said to be the Raman active. However all atoms are spherically 

symmetric and therefore they are not Raman active.

 
The selection rules for pure rotational

Raman transitions

 
in molecules are as follows:

Linear rotors: Δ

 
J = 0,  ±

 
2.

Symmetric rotors: Δ

 
J = 0, ± 1, ± 2 ;   Δ

 
K =0.

Spherical rotors:   are

 
not Rahman

 
active

The Δ

 
J =

 
0

 
pure rotational transitions does not change the frequency of the scattering 

radiation and therefore

 
they contribute only to the Rayleigh

 
Scattering.

For ro-vibrational

 
Raman transitions

 
the selection rules for the quantum number J

 
are the 

same as above.

 
The Raman transitions between the states with Δυ

 
= 1

 
contribute to the 

Stokes Scattering, the Raman transitions between the states with Δυ

 
= -1 contribute to the 

anti-Stokes Scattering. The ΔJ = 0

 
transitions are named

 
Q – branch, the ΔJ = -2

transitions are named О –branch,

 
and the ΔJ = 2

 
transitions are named S –branch.



Chandrasekhara
 

Venkata
 

Raman

Chandrasekhara
 

Venkata
 

Raman
* 7. Nov. 1888 in Trichinopoly

 
(India)

+ 21. Nov. 1970 Karnataka
 

(India)
1930 Nobel price for Physics



Quantum-Mechanical treatment of the Raman Scattering 
and Two-Photon Absorption 
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The probability of Raman scattering: 

where the constant С2

 

is proportional to

 
the squire of the 

light intensity.

The probability of the tow-photon absorption is usually 
several orders of magnitude smaller than the probability 
of the one-photon absorption. Therefore, for observation 
of the two-photon absorption the laser beam is usually 
focused on the sample, thus achieving the necessary 
high density of the electromagnetic radiation. 

A similar effect is the two-photon absorption in 
atoms, molecules, and condensed phase

REMPI 2+1



Raman Spectroscopy of Rotational 
Molecular States
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