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I. TIME-INDEPENDENT PERTURBATION THEORY

We assume that the Hamiltonian of the system is

Ĥ = Ĥ0 + V, (1)

where V̂ is a small addition (perturbation) to the ”unperturbed” Hamiltonian Ĥ0. Let us

assume that the spectrum of the Hamiltonian Ĥ0 is discrete. The corresponding Schrödinger

equation is

Ĥ0Ψ
(0)(q) = E(0)Ψ(0)(q), (2)

where Ψ(0)(q) and E(0) are eigenvectors and eigenvalues of the Hamiltonian Ĥ0 which are

known and q is the set of all coordinates. We seek to find an approximate solution for the

Schrödinger equation

ĤΨ(q) = (Ĥ0 + V̂ )Ψ(q) = EΨ(q). (3)

The wavefunctions Ψ(0)
m are orthogonal to each other and form a complete basis set:

∫
Ψ(0)∗

m(q) Ψ
(0)
m′ (q) dq = δmm′ . (4)

Any unknown wavefunctions Ψ can be expanded over this basis set as

Ψ(q) =
∑
m

cm Ψ(0)
m (q), (5)

where cm are expansion coefficients which do not depend on q.

Substituting eq.(5) into (3) one gets

∑
m

cm(Ĥ0 + V̂ )Ψ(0)
m (q) = E

∑
m

cmΨ(0)
m (q). (6)

Multiplying both sides of eq.(6) from the left by Ψ(0)∗
k(q) and integrating over q one gets

∑
m

cm

∫
Ψ(0)∗

k(q)(Ĥ0 + V̂ )Ψ(0)
m (q)dq = E

∑
m

cm

∫
Ψ(0)∗

k(q)Ψ
(0)
m (q)dq,

∑
m

cm( δkm E
(0)
k + 〈k|V̂ |m〉) = E

∑
m

cm δkm,

(E − E
(0)
k ) ck =

∑
m

cm 〈k|V̂ |m〉. (7)

Eq.(7) is still exact and equivalent to the initial Schrödinger equation in eq.(3). Now we

seek for its approximate solution presenting the coefficients cm and the energy E in the form

E = E(0) + E(1) + E(2) + . . . cm = c(0)
m + c(1)

m + c(2)
m + . . . (8)
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First we assume that the eigenvectors of the Hamiltonian Ĥ0 are non-degenerate and

will seek for correction to the energy level En. Then the zeroth-order expansion coefficients

in eq.(7) stands for c
(0)
k = δkn.

First correction to the energy

Substituting E = En ' E(0)
n + E(1)

n and ck ' c
(0)
k = δkn into eq.(7) one gets for k = n:

E(1)
n = 〈n|V̂ |n〉 =

∫
Ψ(0)∗

n(q)V̂ Ψ(0)
n (q) dq = Vnn. (9)

Therefore

En ' E(0)
n + 〈n|V̂ |n〉. (10)

First correction to the expansion coefficient ck

Substituting E = En ' E(0)
n and ck ' δkn + c

(1)
k into eq.(7) one gets for k 6= n:

c
(1)
k =

〈k|V̂ |n〉
E

(0)
n − E

(0)
k

. (11)

Therefore,

Ψn ' Ψ(0)
n +

∑

k

′ 〈k|V̂ |n〉
E

(0)
n − E

(0)
k

Ψ
(0)
k , (12)

where summation is proceeded over all k 6= n.

Eq.(12) gives a simple criterium of the approximation used: there must be fulfilled the

unequality:
∣∣∣〈k|V̂ |n〉

∣∣∣ ¿
∣∣∣E(0)

n − E
(0)
k

∣∣∣ . (13)

Second correction to the energy

Substituting E = En ' E(0)
n + E(1)

n + E(2)
n and ck ' δkn + c

(1)
k + c

(2)
k into eq.(7) one gets

for k = n:

E(1)
n + E(2)

n = 〈n|V̂ |n〉+
∑
m

c(1)
m 〈n|V̂ |m〉 (14)

Having in mind eqs.(9) and (11) we obtain the following expression for the second-order

correction to the energy

E(2)
n =

∑
m

′
∣∣∣〈n|V̂ |m〉

∣∣∣
2

E
(0)
n − E

(0)
m

, m 6= n. (15)
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Note, that if n is the ground state, then the second-order correction to the energy is

always negative E(2)
n ≤ 0 !

A. Degenerate case

Let us denote by Ψ(0)
n , Ψ

(0)
n′ . . . the wavefunctions which correspond to the same energy

E(0)
n . Eq.(7) cannot be solved now as before, because E(0)

n −E
(0)
n′ = 0 in the denominator of

eq.(11). If the number of the degenerate states l does not exceed 2, or 3 the set of equations

(7) can be solved exactly. Otherwise, the wavefunction of the energy state n in the zero

approximation can be written as superposition of the wavefunctions Ψ(0)
n , Ψ

(0)
n′ . . .:

Ψ(0) = c(0)
n Ψ(0)

n + c
(0)
n′ Ψ

(0)
n′ + · · · (16)

where the coefficients c(0)
n , c

(0)
n′ should be determined later.

We rewrite (7) for k = n′, n′′ . . . using there in the first approximation En = E(0)
n +

E(1)
n , while for the coefficients ck we use their zeroth-order approximation: cn ' c(0)

n , cn′ '
c
(0)
n′ , . . . ck = 0 if k 6= n, n′ . . .. Then eq.(7) can be presented as

E(1)
n c(0)

n =
∑

n′
Vn,n′ c

(0)
n′ , (17)

or

∑

n′

(
Vn,n′ − E(1) δnn′

)
c
(0)
n′ = 0 (18)

which is the system of linear homogeneous equations where the coefficients c
(0)
n′ , with n′ =

1, 2, . . . l and the corresponding eigenvalues E(1) have to be determined. As known from the

Mathematical Analysis such a set of equations has nonzero solutions only if the following

determinant is equal to zero:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V1,1 − E(1) V1,2 · · · V1,l

V2,1 V2,2 − E(1) · · · V2,l

. . . . . . · · · . . .

Vl,1 Vl,2 · · · Vl,l − E(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (19)

where n, n′ take their values from n = 1 till n = l.

Eq.(19) is know as secular equation, it is an algebraic linear equation of the rang l for

variable E(1) and in general has up to l different roots. These roots are the corresponding

4



corrections to the energy in the first approximation. Substituting these roots one after

another into eq.(18) one can determine all coefficients c
(0)
n′ which specify l correct zeroth-

order wavefunctions according to eq.(16).

The explained perturbation theory method will be later used for calculation of the wave-

functions and the energy levels of molecular H+
2 ion.

II. TIME-DEPENDENT PERTURBATION THEORY

Let us consider the Hamiltonian

Ĥ = Ĥ0 + V (t), (20)

where the perturbation V explicitly depends of time. In this case it is not possible to

discuss corrections to the energy, because the energy is simply not preserved and therefore,

the stationary states do not exist. Besides, we will calculate the approximate residual

wavefunctions starting from the wavefunctions of the initial unperturbed system. Let the

wavefunctions Ψ
(0)
k (t) are the eigenvectors of the unperturbed system.

ih̄
∂Ψ

(0)
k (t)

∂t
= Ĥ0Ψ

(0)
k (t) (21)

which can be presented as Ψ
(0)
k (t) = e−

i
h̄

E0tΨ
(0)
k , where E0 is the eigenvalue energy of the

Hamiltonian H0 and the wavefunction Ψ
(0)
k does not depend on time. We seek for the solution

of the perturbed equation

ih̄
∂Ψ(t)

∂t
=

(
Ĥ0 + V̂ (t)

)
Ψ(t) (22)

as an expansion

Ψ(t) =
∑

k

ak(t)Ψ
(0)
k (t) (23)

where the expansion coefficients a(t) are functions of time.

Substituting eq.(23) into eq.(22) and having in mind eq.(21), we get

ih̄
∑

k


Ψ

(0)
k (t)

∂ak(t)

∂t
+ ak(t)

∂Ψ
(0)
k (t)

∂t


 =

∑

k

ak(t)
(
Ĥ0 + V̂ (t)

)
Ψ

(0)
k (t)

ih̄
∑

k

Ψ
(0)
k (t)

∂ak(t)

∂t
=

∑

k

ak(t)V̂ (t)Ψ
(0)
k (t) (24)
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Multiplying both sides of eq.(24) from the left by the wavefunction Ψ(0)
m

∗
and integrating

over all coordinates q we get the differential equation for the expansion coefficients a(t)

ih̄
∂am(t)

∂t
=

∑

k

ak(t)〈m|V (t)|k〉, (25)

where

〈m|V (t)|k〉 =
∫

Ψ(0)
m

∗
(t)V̂ (t)Ψ

(0)
k (t)dq = Vmke

iωmkt, ωmk =
E(0)

m − E
(0)
k

h̄
. (26)

The eq.(25) is still exact and equivalent to the time-dependent Schrödinger equation (22).

Now we will find an approximate solution of this equation.

In the zeroth-order approximation we put in eq.(23) a
(0)
0 (t) = 1 and a

(0)
k = 0 for k 6= 0. In

the first-order approximation we seek a solution in the form ak(t) = a
(0)
k (t)+a

(1)
k (t), however

to the right-hand side of eq.(25) we put ak(t) = a
(0)
k (t) because it is already contains the

small value Vmk(t). Thus, for k 6= 0 we come to the equation

ih̄
∂a

(1)
k (t)

∂t
= 〈k|V (t)|0〉. (27)

The solution of the eq.(27) is as

a
(1)
k (t) = − i

h̄

∫ t

0
〈k|V (τ)|0〉dτ = − i

h̄

∫ t

0
Vk0e

iωk0τdτ. (28)

the probability that the system will be found in the state k is proportional to the square

modulus of the coefficient of the state, |ak(t)|2. Therefore, the rate of change of population

of the state k due to transition from the state 0 is

Wk←0 =
d|ak(t)|2

dt
= ak(t)

da∗k(t)
dt

+ a∗k(t)
dak(t)

dt
(29)

which can be easily calculated from eqs.(27) and (28). The most important that the rate

of change is proportional to the square modulus of the matrix element of the perturbation

between two states:

Wk←0 ∝ |Vk0|2 . (30)

For example, the perturbation which correspond to the interaction between the oscillating

electromagnetic field and an electric dipole moment ~µ = e
∑

i ~ri of the molecule can be

written as

V̂ (t) = −~µ · ~E cos ωt = −µzEz cos ωt (31)
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In this case we can conclude that

Wk←0 ∝ |µz, k0|2 E2
z , (32)

where µk0 is the matrix element of the transition dipole moment:

µz, k0 =
∫

Ψ
(0)
k

∗
µzΨ

(0)
0 dq (33)

It is seen that the rate of transition is proportional to E2
Z , and therefore, to the intensity

I of the incident radiation which is proportional to E2, I ∝ E2. This important results is a

basis of the most of the molecular spectroscopy discussion we will consider later.

III. THE VARIATION METHOD

Let us consider another method of approximate solution of the time-independent

Schrödinger equation

ĤΨ(q) = EΨ(q), (34)

where Ψ(q) and E are unknown wavefunctions and energy states which must be determined.

Multiplying both parts of eq.(34) from the left with Ψ∗(q) and integration over all coor-

dinates q one can clearly see that

E =

∫
Ψ∗(q)ĤΨ(q)dq∫
Ψ(q)∗Ψ(q)dq

, (35)

In case of any conceivable wavefunction Ψ̃(q) we can still build the expectation value of

the energy as follows

〈Ĥ〉 =

∫
Ψ̃∗(q)ĤΨ̃(q)dq

∫
Ψ̃(q)∗Ψ̃(q)dq

, (36)

The Variation Theorem states that for any conceivable wavefunction obeying the same

boundary conditions as the correct ground-state energy eigenfunction Ψgr(q) the correspond-

ing expectation value of the energy 〈Ĥ〉 is larger than the correct ground-state energy eigen-

value of the system Egr.

〈Ĥ〉 ≥ Egr (37)

The variational method consists of evaluating of the expectation value of the energy

〈Ĥ〉 with approximate wavefunctions obeying the same boundary conditions as the correct

ground-state energy eigenfunction which depends on a number of parameters and of varying
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these parameters until the expectation value gets its minimum (δ 〈Ĥ〉 = 0). The result

is an upper limit for the ground state energy of the system, which is likely to be close to

actual ground state energy if the trial wavefunction resembles the true molecular system

eigenvector (for instance, if it has the right number of nodes, etc.).

IV. SUPERPOSITION PRINCIPLE AND WAVE FUNCTION EXPANSION

If two, or more wavefunctions φ1, φ2, . . . φn are solutions of the Schrödinger equation

Ĥφi = Eφi, then any their linear superposition

φ =
∑

i

aiφi (38)

is also a solution of the same Schrödinger equation.

This is a fundamental Superposition Principle of quantum mechanics. The eigenvec-

tors φi can all be made normalized and they are also orthogonal to each other:

∫
φ∗k(q)φi(q)dq = 〈φk|φi〉 = δki. (39)

These wave functions form a complete basis set, which means that almost any wave-

function of the same variables q can be expanded over the wavefunctions φi:

ψ(q) =
∑

i

ciφi(q). (40)

Here ci are expansion coefficients which can all be determined using the orthogonality

relation of the wavefunctions φi(q) in eq.(39). Multiplying both sides of eq.(40) by the

wavefunction φ∗k(q) and integrating over the variables q we get:

ck = 〈φk |ψ〉. (41)

Eqs.(40) and (41) represents the very general principle of Wave Function Expansion

which is of fundamental importance in chemistry. That is because we usually know exact

solutions of the Schrödinger equation only for very limited number of simple systems and

have to built the approximate wavefunction of the systems of interest as a linear combination

of these exact solutions.
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V. LINEAR COMBINATIONS OF ATOMIC ORBITALS (LCAO):

H+
2 MOLECULE

As a simplest example we will discuss the theory of the molecular bonds in the hydrogen

molecule-ion H+
2 . Let us consider two protons A and B which are placed at the distance R

from each other and one electron somewhere between them. In case of the infinite separation

R →∞ the electron can belong either to the proton A, or to the proton B. The correspond-

ing wavefunctions of the isolated ground state hydrogen atoms A and B are ΨA = ΨH
1SA

(rA)

and ΨB = ΨH
1SB

(rB), respectively, where rA and rB are the electron coordinates calculated

from the corresponding proton. As known

ΨH
1SA

(r) =
e−r/a0

(πa3
0)

1/2
, (42)

where a0 is the Bohr radius, a0 = 4πε0h̄
2/mee

2 = 52.9177 pm.

The Hamiltonian for a single electron in the molecular ion H+
2 is

Ĥ = − h̄2

2me

∇2 + V, V = − e2

4πε0

(
1

rA

+
1

rB

− 1

R

)
. (43)

The expressions in eqs.(42), (43) are written in SI units. However, it is often more

convenient to proceed calculations in microscopic physics using co-called atomic units,

where c = e = me = h̄ = 4πε0 = 1. The atomic unit of length is the Bohr radius,

a0 = h̄2/me2. The atomic unit of energy is me4/h̄3 = 27, 21eV . The atomic units of mass

and charge are electron mass me and charge e, respectively.

Using the atomic units eqs. (42) and (43) can be rewritten in a somewhat more simpler

form

ΨH
1SA

(rA) =
e−rA

(π)1/2
, (44)

Ĥ = −1

2
∇2 + V, V = −

(
1

rA

+
1

rB

− 1

R

)
. (45)

For finite separations R the electron belongs to both atoms A and B and in the first

approximation the corresponding overall molecular wavefunction can be written as super-

position of the two atomic orbitals H+
2 wavefunction

Ψ = [cAΨA(rA) + cBΨB(rB)] , (46)

where cA and cB are expansion coefficients and rA and rB are the distances from the electron

to each of the nucleus A and B.
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The wavefunction in eq.(46) is a linear superposition of atomic orbitals (LCAO).

This is an approximate molecular orbital which has cylindrical symmetry around the in-

ternuclear axis and is called a σ orbital because it has no angular momentum around the

internuclear axis.

The molecular energy levels can be obtained using the perturbation theory method ex-

plained in sec. IA. Writing the Schrödinger equation in the form

ĤΨ = EΨ, (47)

where Ĥ and Ψ are given in eqs.(43) and (46), respectively, we multiply both sides of this

equation alternatively by the wavefunctions Ψ∗
A(rA1) and Ψ∗

A(rB1) and integrate over the

coordinate of the electron r

cA〈ΨA|Ĥ|ΨA〉+ cB〈ΨA|Ĥ|ΨB〉 = E(cA + cBS)

cA〈ΨB|Ĥ|ΨA〉+ cB〈ΨB|Ĥ|ΨB〉 = E(cAS + cB), (48)

or

cA

(
〈ΨA|Ĥ|ΨA〉 − E

)
+ cB

(
〈ΨA|Ĥ|ΨB〉 − ES

)
= 0

cA

(
〈ΨB|Ĥ|ΨA〉 − ES

)
+ cB

(
〈ΨB|Ĥ|ΨB〉 − E

)
= 0, (49)

where S is so named overlap integral:

S =
∫

ΨA(rA)ΨB(rB) dr. (50)

The set of two homogeneous equations (49) slightly differ from the secular equations

explained in sec. (IA) because the basic eigenfunctions ΨA(rA) and ΨB(rB) are not orthog-

onal, as they are centered of different nuclei A and B. Therefore, the the overlap integral S

appears in eqs. (49) instead of the Kronecker symbol δnn′ in eqs.(18). The matrix element

〈ΨA|Ĥ|ΨA〉 = αA is called a Coulomb integral. It can be interpreted as the energy of the

electron when it occupies A (for αA) and it is negative. In a homonuclear diatomic molecule

αA = αB = α. The matrix element 〈ΨA|Ĥ|ΨB〉 = β is called a resonance integral. It is

mostly responsible for the molecular bonding. It vanishes when the orbitals do not overlap,

and at equilibrium bond length it is normally negative. The determinant in the set of two

algebraic equations in (49) results in a second order algebraic equation and can easily be

10



solved. Two corresponding energies are

E± =
α± β

1± S
, (51)

while the corresponding expansion coefficients cA and cB are

cA = N, cB = ±N, N =
1

[2(1 + S)]1/2
, (52)

The corresponding molecular wavefunctions

Ψ+(r) = N [ΨA(rA) + ΨB(rB)] (53)

and

Ψ−(r) = N [ΨA(rA)−ΨB(rB)] (54)

are known as bonding and antibonding molecular orbitals, respectively.

VI. HOMONUCLEAR DIATOMIC MOLECULES

The above concepts can be applied to homonuclear diatomic molecules in general. For

two atomic homonuclear molecules like H2, O2, N2 etc, the LCAO expansion represents

an especially simple approach. The progress made with the ionic molecule H+
2 is as well

valuable for other homonuclear species. We will treat theses molecules in the same way.

Of course, we will face some additional points, especially for bonds established by more

than one electron. Analogous to atomic orbitals, we introduce molecular orbitals of different

energy. The molecular electrons are distributed among them in a way that the orbitals with

the lowest energies are occupied first and the Pauli principle is accomplished.

A. General Concepts

Note, that from two atomic orbitals we can build two one-electron molecular orbitals. In

general, from N atomic orbitals we can build N one-electron molecular orbitals. A general

principle of molecular orbital theory is that all atomic orbitals of an appropriate sym-

metry contribute to a molecular orbital. One-electron molecular orbitals are classified

according to the quantum number λ for the angular momentum about the internuclear axis.

In general, for an electron in a diatomic molecule the axial angular momentum is given by

lz = ±λh̄ (55)
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The value of λ for a one-electron orbital of a diatomic molecule is denoted by a lowercase

Greek letter according to

λ = 0 1 2 3

Orbital = σ π δ φ

This is, of cause, analogous to the classification of atomic one-electron orbitals as s, p, d,

f . . . according to l = 0, 1, 2, 3, . . ..

The subscript indices g and u (from the German even/gerade and odd/ungerade), for

instance, σg, or πu refer to the symmetry of the one-electron molecular orbital with respect

to the Inversion of all electron coordinates in the molecular center of symmetry (the middle

of the internuclear distance). The gerade MOs which are indicated by the subscript index g

remain the same under the Inversion, while the ungerade MOs which are indicated by the

subscript index u change their sign.

B. Period 1 Diatomic Molecules

In the first approximation, we consider these molecular orbitals (MO) as linear combi-

nations of atomic orbitals. Combining two 1s orbitals of the hydrogen atom, we obtain two

MOs which already appeared in the previous chapter:

σg = N [ΨA(1s) + ΨB(1s)] (56)

σu = N [ΨA(1s)−ΨB(1s)] (57)

The electron cloud which is related to the σ molecular orbital is axially symmetric over

the internuclear axis. Note that the wavefunctions ΨA(1s) and ΨB(1s) in eqs.(56) and (57)

are identical for homonuclear molecules, however centered on different nuclei. Therefore,

both wave functions are introduced with the same weight N . Later we will denote them as

ΨA(1s) ≡ ΦA and ΨB(1s) ≡ ΦB.

According to eq.(51) in case where the overlap integral S is small compared with unity,

the energy values E± which are degenerated at infinite R separation, split symmetrically at a

finite R separation into two values above and below the original energy level. The level with

the smaller energy is called bonding MO as it is below the energy level of the separated

atoms. The level with the larger energy is called antibonding MO as it is above the energy
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level of the separated atoms. Horizontal lines in the following figure represent two atomic

and two molecular orbitals and the corresponding electron energy at each orbital.

Using the Pauli Principle we can now we populate the MOs starting with the lowest one.

For H+
2 the only electron can populate either σg, or σ∗u orbital where the former corresponds

to the molecular ion ground state. Here the asterix (∗) indicates the antibonding orbital.

For H2 molecule in the first approximation the total molecular wavefunction can be

written as product of two one-electron wavefunctions. Assuming that the each electron

wavefunctions are σg(1) and σg(2), the total ground state wavefunction of the molecule can

be written as:

Ψg = σg(1) σg(2) ' [ΦA(1) + ΦB(1)] [ΦA(2) + ΦB(2)]

= ΦA(1)ΦB(2) + ΦB(1)ΦA(2) + ΦA(1)ΦA(2) + ΦB(1)ΦB(2) (58)

The first two terms describe two electrons which are located at different protons each.

These terms describe so named covalent bond. The last two terms describe two electrons

which are located at the same nucleus A, or B. These terms describe so named ionic bond.

In fact the better agreement with experiment can be obtained when the total molecular

wavefunction is taken in the form

Ψg = ΦA(1)ΦB(2) + ΦB(1)ΦA(2) + c [ΦA(1)ΦA(2) + ΦB(1)ΦB(2)] , (59)

where the coefficient c can be determined within the variation procedure.

Therefore, the ground state electronic configuration of H2 is obtained by accommodating

the two electrons in the lowest available orbital. This is schematically shown in the molecu-

lar orbital energy level diagram. These are two electrons which can enter the σg orbital

by pairing their spins. According to the Pauli Principle, no more electrons can enter this

bonding orbital. The diagram also contains data for other Period 1 diatomic molecules.

Particularly, He2 molecule contains four electrons which should contribute to both σg and

σ∗u orbitals. Although these orbitals differ in detail from those in H2, the general shape is

the same, and we can use the same qualitative energy level diagram in the discussion. Two

from the four electrons enter the σg orbital, but then it is full, and the next two must enter

the antibonding σ∗u orbital as shown in figure. The ground electronic configuration of He2

is therefore σ2
gσ

∗2
u . We see that there is one bond and one antibond. Because an antibond

is slightly more antibonding than a bond is bonding, the He2 molecule is unstable having

higher energy than the separate atoms.
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C. Bonding order

A measure of the net bonding in a diatomic molecule is its bond order, b:

b =
1

2
(n− n∗), (60)

where n is the number of electrons in bonding orbitals and n∗ is the number of electrons in

antibonding orbitals. For instance, for H2 b = 1, corresponding to a single bond H – H,

while for He2 b = 0, corresponding to no bond at all.

D. Period 2 diatomic molecules: σ orbitals

For building σ orbitals we form linear combinations of all atomic orbitals that have

cylindrical symmetry about the internuclear axis. For instance, in Period 2 atoms the

valence atomic orbitals are 2s and 2p. Assuming that Z axis is parallel to the internuclear

axis R, the general form of the molecular σ orbital can be written as

Ψσ = cA2sΦA2s + cB2sΦB2s + cA2pzΦA2pz + cB2pzΦB2pz (61)

Using these four atomic orbitals: |A2s〉, |B2s〉, |A2pz〉, and |B2pz〉 we can form four

molecular orbitals of the σ symmetry by an appropriate choice of the coefficients c. A

procedure of calculating these coefficients is similar to what was discusses before for H+
2 and

consists of solving the secular equation.

Sometimes, 2s and 2pz orbitals can be treated separately, because they have distinctly

different energies. Then, the 2s orbitals of the two atoms overlap with each other giving

a bonding (σg) and an antibonding (σ∗u) molecular orbital. The two 2pz atomic orbitals

which are directed along the internuclear axis interact strongly. They may interfere with

each other giving a bonding (σg) and antibonding (σ∗u) molecular orbital.

Thus, you can see that there are many molecular orbitals of the same symmetry appear

from theory. The nomenclature of these orbitals can be done in several different ways. For

instance, in some handbooks you will find the notation for the molecular orbitals which

explicitly indicates the atomic orbitals involved to a definite molecular orbital, for instance:

σg2p, or σu1s, where 2p and 1s are corresponding atomic orbitals. This nomenclature is

very clear and useful for didactic. However, in general, all atomic orbitals of the same sym-

metry can contribute to a given molecular orbital as seen from eq.(61). In other handbooks
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molecular orbitals are labelled just by their numbers, for instance, 1σg, or 3σu, where the

numbers order the molecular orbitals of the same symmetry with respect to their energy.

The higher the number is, the higher is the energy of an electron within this state. This

nomenclature, which we use in these lectures is more abstract than the first one, but more

appropriate for theoretical analysis.

E. Period 2 diatomic molecules: π orbitals

Considering the 2px and 2py orbitals of both atoms we see that they are perpendicular

to the internuclear axis. They can overlap only being oriented to the same side, that is 2px

with 2px and 2py with 2py. The overlapping can be constructive, or destructive and results

is a bonding, or antibonding π orbital. The bonding π orbitals are u (ungerade) instead of

g (gerade) because the two lobs of the 2p atomic orbitals have opposite signs.

Although the 2px, 2py, 2pz, atomic orbitals are at the same energy, the overlap for the

σ2pz molecular orbitals is different from that of the π2p orbitals. Therefore, the σ2pz energy

is not equal to the π2px and π2py energies, although the π2px and π2py energies are equal

to each other. This leads to additional degeneracy of the π orbitals, each of them can be

populated by the maximum four electrons.

F. Period 2 diatomic molecules: Succession of Molecular Orbitals and Aufbau

Principles

Now we are able to use the succession of MOs to describe homonuclear two atomic

molecules. The electrons are distributed among the orbitals according energy and the Pauli

principle. Due to degeneracy, up to two electrons are allocated to any σ energy level and up

to four electrons are allocated to any π energy level.

The sequence of MO energies implies structural properties of molecules in a similar way

the energy levels of AOs are used to explain the properties of atoms. The currently avail-

able data support the following succession of molecular orbitals for the Period 2 diatomic

molecules up to and including N2:

1σg < 1σu < 2σg < 2σu < 1πu < 3σg < 1πg < 3σu
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However, for O2 and F2 the 3σg orbital becomes lower than the 1πu orbital. Therefore,

succession of the orbitals for the Perion 2 molecules from O2 till Ne2 is as follows:

1σg < 1σu < 2σg < 2σu < 3σg < 1πu < 1πg < 3σu

With the orbitals established, we can deduce the ground configuration of the molecules

by adding the appropriate number of electrons to the orbitals and following the Aufbau

principles:

(i) Electron occupy different orbitals approximately in the order of their energies

(ii) Only two electrons can occupy any non-degenerate orbital

(iii) An atom, or a molecule in its ground state adopts a configuration with the

greatest number of unpaired electrons (Hund’s maximum multiplicity rule)

G. Period 2 diatomic molecules: description of different molecules

The MO description tends to ignore the inner shell electrons and descriptions of electronic

configurations just care for the former valence electrons. For example Li2 with two valence

electrons is described with the inner shell electrons as

Li2[(1σg)
2(1σu)

2(2σg)
2], (62)

or, shortly by introducing capital letters for complete shells as

Li2[KK(2σg)
2]. (63)

Let us consider N2 with 10 valence electrons. The electronic configuration can be written as

N2[KK(2σg)
2(2σu)

2(1πu)
4(3σg)

2], (64)

where two lowest electron pairs occupy and fill the bonding (2σg) and antibonding (2σu)

orbitals, respectively. Six other electrons occupy the bonding (1πu) and (3σg) orbitals.

Therefore, the bonding order for N2 is 1
2
(8 − 2) = 3 indicating a very strong triple molec-

ular bond N ≡ N which is consistent with very high dissociation energy of the molecule

(942 kJ mol−1 ).
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The ground state electron configuration of O2 with 12 valence electrons is

N2[KK(2σg)
2(2σu)

2(3σg)
2(1πu)

4(1πg)
2], (65)

with the bond order 2.

According to the Hund’s rule for allocation of electrons in degenerated MOs 1π∗gx and

1π∗gy these two electrons will have parallel spins. Therefore, the O2 molecule has a net spin

angular momentum S = 1 and its ground state is so called triplet state.

In a similar manner, we describe the electronic configuration of fluorine molecule F2

F2[KK(2σg)
2(2σu)

2(3σg)
2(1πu)

4(1πg)
4], (66)

where (1πu)
4 denotes the degenerated pair of (1πxu)

2 and (1πyu)
2 orbitals. 2σg and 2σu as

well as 1πu and 1πg are pairs of bonding and antibonding MOs. Therefore, of the 14 valence

electrons only the pair of electrons in (3σg)
2 are regarded as bonding and this corresponds

to the finding of a single bond of the σ-type in the molecule.

VII. HETERONUCLEAR DIATOMIC MOLECULES

As well for a treatment of heteronuclear diatomic molecules, such as CO, or HCl the

LCAO method can also be applied. However, now the electron cloud distribution is usually

not evenly shared between the atoms because it is energetically favorable for the electron

pair to be closer to one atom than the other. This type of covalent bond is called polar

bond.

If only two atomic orbitals are involved, the one-electron molecular orbital can be written

as linear combination of atomic orbitals as

Ψ = cAΦA + cBΦB, (67)

where ΦA and ΦB are the atomic orbitals of the atom A and B, respectively and the coeffi-

cients cA and cB are usually not equal.

The general principles of construction of the polar molecular orbitals are the same as for

the non-polar orbitals described above. Particularly:

(i) The energy levels of the atomic orbitals ΦA and ΦB cannot differ too much. Therefore,

the valence orbitals of the atoms combine strongly, whereas contribution from the

inner shell orbitals can usually be neglected.
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(ii) The atomic orbitals ΦA and ΦB should be of the same symmetry.

(iii) The overlap of the orbitals ΦA and ΦB must be be high, this is often referred to as

”Principle of maximal overlap”.

Let us apply the conditions for an effective linear combination of atomic orbitals to the

hydrogen fluoride molecule HF and consider only the 1S atomic orbital of the H atom and

2p valence atomic orbital of the F atom. As discussed above, only the 2pz atomic orbital

of F can combine with the 1s orbital of H giving a σ and σ∗ type molecular orbitals. Note,

that the molecule is not symmetric over the Inversion and the subscripts g and u cannot be

now used. Therefore, the general form of the molecular orbital is

Ψ = cHΦH(1s) + cF ΦF (2pz) (68)

The H1s orbital lies 13.6 eV below the zero of energy (the separated proton and electron)

and the F2p orbital lies at 18.6 eV. Hence, the bonding σ orbital in HF is mainly F2p,

while the anti-bonding σ∗ orbital is mainly H1s orbital in character. Therefore, the two

electrons in the molecular ground state are most likely to be found in the F2p orbital and

there is a partial negative charge on the F atom and a partial positive charge on the H

atom. The electron configuration of the molecule can be written as

(1σ)2(2σ)2(1π)4 : 1Σ (69)

The expansion coefficients cH and cF as well as the energies of two corresponding molecu-

lar states can be found using the perturbation theory method described in Section IA. The

secular determinant for the two-state problem is as:

∣∣∣∣∣∣∣

αF − E β − ES

β − ES αH − E

∣∣∣∣∣∣∣
= 0, (70)

where αF and αH are Coulomb integrals while β is the resonance integral.

Eq.(70) can be rewritten as a following second-order equation

(αF − E)(αH − E)− (β − ES)2 = 0 (71)

Assuming that the energy of the bonding MO energy Ebond differs only slightly from the

fluoride atomic orbital energy ∆E1 = Ebond − αF ¿ 1 we reduce eq.(71) to the first order
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getting the solution

Ebond ' αF − (β − αF S)2

αH − αF

(72)

In the same way assuming that the energy of the anti-bonding MO energy Eantibond differs

only slightly from the hydrogen atomic orbital energy ∆E2 = Eantibond − αH ¿ 1 we get

another solution

Eantibond ' αH +
(β − αHS)2

αH − αF

(73)

Thus, it is seen from eqs. (72) and (73) that the bonding state energy is lower then

the fluoride atomic orbital energy, while the antibonding state energy is higher than the

hydrogen atomic orbital energy. More, both bonding and antibonding interactions decrease

as the difference |αF −αH | increases. Note, that the obtained solutions (72) and (73) can be

used only for polar molecule case αF 6= αH and are not valid for the homogeneous molecule

case αF − αH ' 0.

To obtain the coefficients cA and cB that represent the weight of the single atomic orbitals,

we introduce the obtained expression for Ebond into equation (18):

(αF − E)cF + (β − ES)cH = 0 (74)

Using again the approximation |Ebond − αF | << 1 we find:

cF

cH

' −αH − αF

β − αF S
, (75)

or

Ψbond ' cF

(
ΦF (2pz)− β − αF S

αH − αF

ΦH(1s)

)
(76)

In the similar way using eq. (73) for the Eantibond we get

Ψantibond ' cF

(
ΦF (2pz) +

β − αHS

αH − αF

ΦH(1s)

)
(77)

VIII. HYBRIDIZATION

Now we consider the example of Lithium Hydride (LiH) and discuss the LCAO description

of the molecular orbitals. Ab initio calculations with a minimal basis of 1s, 2s, and 2p Li-

atom orbitals the 1s H-atom orbital result in (according to Ransil (1960)) the following
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molecular orbitals:

| 1σ〉 ' ΦLi(1s)

| 2σ〉 ∝ 0, 323 ΦLi(2s) + 0, 231 ΦLi(2pz) + 0, 685 ΦH(1s) (78)

and the electron configuration

LiH
[
(1σ)2(2σ)2

]
(79)

Thus, the inner filled molecular orbital of lithium hydride, (1σ)2, is almost identical

with the Li-atom 1s orbital, and the bonding 2σ molecular orbital consists of three atomic

orbitals: ΦLi(2s), ΦLi(2pz), and ΦH(1s). The 2p and 2s-AO of lithium contribute almost

equally to the 2σ molecular orbital because the first of them is only slightly higher in energy

than the other. The wavefunctions in eq.(78) are so named Hartree-Fock orbitals which

were obtained using the the self consistent field approach. However, there is a possibility

to go back to our previous policy of including only two atomic orbitals in our LCAO-MOs

with the only minimal damage of the wave function. We replace the 2s and 2pz Li atomic

orbitals by two new kind of atomic orbitals:

Φsp1 =
1√
2
(ΦLi(2s) + ΦLi(2pz))

Ψsp2 =
1√
2
(ΦLi(2s)− ΦLi(2pz)), (80)

where the coefficients 1/
√

2 are normalization factors.

The new orbitals in eq.(80) are called (sp) hybrid orbitals and they can be used instead

of the 2s and 2pz orbitals. Therefore, eq.(78) can be presented in a somewhat more simple

form:

| 1σ〉 ' ΦLi(1s)

| 2σ〉 ' 0, 501 Φsp1 + 0, 865 ΦH(1s) (81)

The approximate orbitals in eq.(81) are not as good as the exact Hartree-Fock orbitals

in eq.(78), however, they can be used for qualitative description of the molecular bonding.

In the 2σ LCAO-MO, the coefficient of the 1sH orbital is roughly twice as large as the

coefficient of the sp1Li orbital. We say that the electron cloud is not equally shared and

see again that the bond in LiH is a polar covalent bond. Particularly, the H end of the

molecule is negatively charged, while the Li end is positively charged. This distribution of

the electron cloud gives the molecule an electric dipole moment.

20



A. sp3 Hybridization

Other type of hybrid orbitals are particularly useful for description of the bonding problem

and structure in polyatomic molecules, like methane CH4, water H2O and many others. Let

us consider water molecule. Since the molecule is a 10-electron system at least five space

orbitals are required for an orbital wavefunction. We will first use unmodified five lowest-

energy atomic space orbitals of one oxygen atom two atomic orbitals of the hydrogen atoms.

The 1s oxygen orbital is far lower in energy than the other orbitals and we will use it as a

nonbonding orbital. All of the oxygen second shell orbitals have appropriate energies to be

used in bonding LCAO-MOs with the hydrogen 1s orbitals.

Since the 2pz orbital is cylindrically symmetric about the Z axis, we place a hydrogen

nucleus denoted by A on the Z axis and construct the bonding molecular orbital

|1σ〉 = cO|2pzO〉+ cH |1sA〉, (82)

where |1sA〉 is the 1s hydrogen orbital centered on hydrogen nucleus A and the coefficients

cO and cH are constants.

Then, we place another hydrogen atom denoted by B on the Y axis and another construct

the LCAO-MO:

|2σ〉 = cO|2pyO〉+ cH |1sB〉. (83)

The obtained |1σ〉 orbital is a σ orbital because it is a linear combination of two atomic

orbitals corresponding to m = 0. The |2σ〉 orbital bears the same relationship to the Y axis

as the |1σ〉 orbital does to the Z axis, so the projection of the orbital angular momentum

on the Y axis for this orbital is also equal to zero.

Since the energy of the oxygen 2p orbitals is lower than that of the hydrogen 1s orbitals,

optimization of the coefficients will give for the bonding orbital

|cO| > |cH | (84)

which means that the electrons occupying the |1σ〉 and |2σ〉 orbital will be more likely found

near the oxygen nucleus than near the hydrogen nucleus. According to the Aufbau principle

the ground state configuration is thus

(1sO)2(2sO)2(2pxO)2(1σ)2(2σ)2 (85)
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with two single bonds at a bond angle of 90o.

However, this result disagree with the experimental value of the bond angle of 104, 5o.

Also this result disagree with the known fact that the water molecule tends to form two

equivalent hydrogen bonds between its oxygen atom and hydrogen atoms of other water

molecules, indicating that the two pairs of of nonbonding electrons in the valence shell

should occupy equivalent orbitals, instead of occupying the oxygen 2s and 2px orbitals.

A better wave function for the water molecule is obtained by creating a set of hybrid

orbitals that are the linear combinations of the 2s orbital and all three of the 2p orbitals:

|2sp31〉 =
1

2
(−|2s〉+ |2px〉+ |2py〉+ |2pz〉) (86)

|2sp32〉 =
1

2
(−|2s〉+ |2px〉 − |2py〉 − |2pz〉) (87)

|2sp33〉 =
1

2
(−|2s〉 − |2px〉+ |2py〉 − |2pz〉) (88)

|2sp34〉 =
1

2
(−|2s〉 − |2px〉 − |2py〉+ |2pz〉) (89)

The orbital regions of the 2sp3 hybrid orbitals are directional. In the figure, vectors are

drawn along the positive coordinate axis in the direction of the largest positive values of

the 2sp3 orbitals. These vectors are axes of the cylindrical symmetry of the corresponding

hybrid orbitals. Since connecting the four alternative corners of a cube with line segments

constructs a regular tetrahedron, the angle between any two of the axes shown is called

the tetrahedral angle and approximately equal to 109 degrees.

We can now construct an approximate wavefunction for the water molecule using the

2sp3 hybrid orbitals. We place the two hydrogen atoms on the symmetry axes of two 2sp3

hybrid orbitals: hydrogen A on the axis of the 2sp32 orbital and hydrogen B on the axis of

the 2sp33 hybrid orbital. Then we form two bonding LCAO molecular orbitals

|σA〉 = cO|2sp32〉+ cH |1sA〉 (90)

|σB〉 = cO|2sp33〉+ cH |1sB〉 (91)

Along with the bonding orbitals |σA〉 and |σB〉 there are antibonding orbitals |σ∗A〉 and

|σ∗B〉 which are somewhere higher in energy and vacant in the ground state. By the Aufbau

principle the electron configuration of the ground state is

(1sO)2(2sp31)2(2sp34)2(σA)2(σB)2 (92)
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As for earlier approximate wavefunction, there are two single bonds and two pairs of

valence shell nonbonding electrons which occupy nonbonding sp3 orbitals. The bond an-

gle is equal to the tetrahedral angle 1090 and is in reasonably good agreement with the

experimental bond angle of 1050.

Now we qualitatively consider the bonding structure in methane molecule CH4 using the

electron pair bond approach where the bond between only two partners is treated. The

conditions for the bond formation is as follows:

(i) Both partners provide one suitable orbital each for building the molecular bond.

(ii) Two electrons are needed for the bond: each partner can contribute one electron, or

both electrons can be contributed by one partner.

The electron pair bond approach is closely related to the valence-bond theory which

was the first quantum mechanical theory of bonding. Although this theory has undergone

less much computational development than the molecular orbital theory we explained

above, it is very useful for qualitative explanation and widely used throughout chemistry.

As seen from the picture of the carbon electron structure, there are at least three different

possible ways of building the molecular bonds in CH4 molecule:

(a) Bonding of two H atoms to a C atom using two available 2p orbitals of carbon. No

additional (promotion) energy has to be supplied, but only two bonds are formed

instead of four.

(b) Bonding of four H atoms to a C atom using two sp linear hybrid and two 2p orbitals

of carbon. Thus four bonds can be built, however the energy for the promotion of two

hybrid sp orbitals to be supplied is

EH = 2 · 1

2
= ∆E (93)

(c) Bonding of four H atoms to a C atom using four sp3 tetrahedral hybrid orbitals of

carbon. Thus four equivalent bonds can be built and the energy for the promotion of

four hybrid sp orbitals to be supplied is

EH = 2 · 3

4
∆E − 2 · 1

4
∆E = ∆E (94)
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The overlap through hybrid orbitals in case (c) better than in case (b). Therefore, tetrahe-

dral orbitals should be preferred for the bond formation. Indeed a tetrahedral arrangement of

four H atoms around the C atom was found experimentally in methane, where the bonding

angle is very close to the tetrahedral angle (109028′).

B. sp2 Hybridization

Other important type of hybrid orbitals is sp2 hybridization. In this case 2s orbital and

two of the three 2p orbitals can be combined as follows

|2sp21〉 =
1√
3

(
|2s〉+

√
2|2pz〉

)
(95)

|2sp22〉 =
1√
3


|2s〉+

√
3

2
|2px〉 − 1√

2
|2pz〉


 (96)

|2sp23〉 =
1√
3


|2s〉 −

√
3

2
|2px〉 − 1√

2
|2pz〉


 , (97)

while the third 2p orbital remains the same: |2sp24〉 = |2py〉.
The combination of the |2sp21〉, |2sp22〉, and |2sp23〉 hybrid orbitals have their max-

ima shifted by 120o in the XZ plane. These orbitals are called trigonal planar hybrid

orbitals. These orbitals are particularly important for describing bonding in the planar

molecules like ethene C2H4, benzene C6H6 and others which are discussed in the next sec-

tion.

C. Molecules with π electron systems: the Hückel approximation

Chemical bonding in such molecules as H2, HCl, LiH, H2O, and CH4 described above

can be described by σ-type MOs with single bonds. Now we will consider another im-

portant class of molecules with double, or triple bonds, where the π molecular orbitals

play important role. These are, for instance, Ethene (C2H4), Butadiene (C4H6), Benzene

(C6H6), Ethyne (C2H2), and many others. These molecules can be viewed as system where π

electrons move relatively freely and are extending over the entire molecular skeleton which

is formed by the σ electrons. The highest occupied molecular orbitals in such molecules

(HOMO) is a π orbital and the lowest unfilled molecular orbital (LUMO) is a π∗ orbital.
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These two orbitals jointly forms the frontier orbitals of the molecule. The frontier or-

bitals are very important because they are likely response for many of the chemical and

spectroscopic properties of the molecule.

Note, that strictly speaking the classification of an orbital as σ and π is valid in linear

molecules only. However, it is widely used to denote the local orbital symmetry with respect

to a given A−B bond axis. For planar molecules the σ bonds are nodeless with respect to

the molecular plane and the π bonds have a node in the molecular plane.

Let us first consider in more detail the electronic structure of a carbon atom and for-

mation of hybrid orbitals discussed above. Two important hybrid orbitals which can fit

the symmetry of a planar molecule are the linear sp and the trigonal sp2 orbitals described

above.

The molecular orbital energy level diagram can be constructed using a set of approx-

imations suggested in 1931 by Erich Hückel (German physicist and theoretical chemist,

1896-1980). The Hückel approximations are as follows:

1. Only the frontier π orbitals are calculated, while the lower energy σ orbitals are as-

sumed to form a rigid framework that determines the general shape of the molecule.

2. All the C atoms are treated identically, so all Coulomb integrals α for the atomic

orbitals which contribute to the π orbitals are set equal.

3. All overlap integrals S are set equal to zero.

4. Only the resonance integrals between the neighbor C atoms are set nonzero and all

equal to β.

Let us consider molecular orbital energy level diagrams for several important molecules

Ethene C2H4

Each carbon atom has three neighbors, so the best suitable bonding orbital is a trigonal

hybrid orbital. The carbon atoms are kept together by trigonal planar σ bonds. The same

bonds keeps two H atoms to each carbon atom. A single π molecular orbital which is built

from the rest 2pz orbitals of both C atoms additionally keeps them together producing the

double bond.
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Quantitatively, the π orbitals in C2H4 can be expressed by as LCAOs of two C2p orbitals,

which are perpendicular to the molecular plane:

Ψ = cAφA + cBφB, (98)

where φA and φB are 2pZ orbitals of the C atoms A and B, respectively. For obtaining the

expansion coefficients cA and cB and the energies we have to solve the second-order secular

determinant: ∣∣∣∣∣∣∣

α− E β − ES

β − ES α− E

∣∣∣∣∣∣∣
= 0, (99)

where according to the Hückel approximations the Coulomb integrals α are set the same

and where the overlap integral must be set to zero S = 0.

Eq. (99) has obvious roots

E = α± β, (100)

where the sign (+) corresponds to the bonding orbital (note, that β is negative) and

the sign (−) corresponds to the antibonding orbital. The Aufbau principle leads to the

configuration 1π2 where each carbon atom supplies one electron to the π bond.

Butadiene C4H6.

Here again each carbon atom has three neighbors, so the best suitable bonding orbital

is a trigonal hybrid orbital. The carbon and hydrogen atoms are kept together by trigonal

planar σ bonds. There are four 2pz orbitals from each of the four C atom which form four

π molecular orbitals contributing to the double bonds.

Quantitatively, the π orbitals in C4H6 can be expressed by as LCAOs of four C2p orbitals:

Ψ = c1φ1 + c1φ1 + c3φ3 + c4φ4, (101)

where φi, i = 1 . . . 4 are four C2pZ orbitals. The Hamiltonian matrix becomes now four-

dimensional. According to the Hückel approximations the corresponding secular determinant

can be written as: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α− E β 0 0

β α− E β 0

0 β α− E β

0 0 β α− E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (102)
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Eq. (102) is equivalent to the fourth-order linear algebraic equation and can be easily

solved with an appropriate mathematical software. The roots are as follows: Eq. (99) has

obvious roots

E1 = α + 1, 62β

E2 = α + 0, 62β

E3 = α− 0, 62β (103)

E4 = α− 1, 62β

where the energy states E1 and E4 corresponds to pure bonding and antibonding orbital,

respectively, while the states E2 and E3 are mixture of bonding and antibonding orbitals.

The Aufbau principle leads to the configuration 1π22π2.

Benzene C6H6.

The most notable example of delocalization π bonding is benzene and the aromatic

molecules based on its structure. Six C atoms have three trigonal planar sp2 hybrid or-

bitals each and a single 2π orbital which is perpendicular to the molecular plane.

An H atom is bonded by an overlap (H1s+Csp2) σ orbital to a C atom and the remaining

hybrid orbitals form a regular hexagon structure of the C atoms. The internal angle of a

regular hexagon is 1200 which perfectly fits sp2 hybridization angle.

The rest six 2p orbitals, one from each of the C atom form six π molecular orbitals which

are spread all round the hexagon ring. These six molecular orbitals and their energies can be

calculated within the Hückel approximations by diagonalizing a 6 × 6 Hamiltonian matrix.

Particularly, the π orbitals can be expressed by as LCAOs of six C2p orbitals:

Ψ =
6∑

i=1

ciφi (104)

where φi, i = 1 . . . 6 are six C2pZ orbitals.

27



The corresponding secular determinant can be written as:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α− E β 0 0 0 β

β α− E β 0 0 0

0 β α− E β 0 0

0 0 β α− E β 0

0 0 0 β α− E β

β 0 0 0 β α− E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (105)

where the non-zero matrix elements β in the right-upper and left-down corners indicate

cyclic interaction between the C atoms within the hexagon ring.

The MO energies which are the roots of Eq. (105) are as follows

E6 = α− 2β

E4,5 = α− β

E2,3 = α + β (106)

E1 = α + 2β

where the lowest energy state E1 is bonding between all neighboring atoms, the highest

energy state E6 is antibonding between each pair of neighbors, and other four intermediate

states are a mixture of the bonding, antibonding, and nonbonding orbitals. It is also seen

that the energy level E2 is degenerate with the level E3, and that the level E4 is degenerate

with the level E5. According to the Aufbau principle three lowest orbitals are fully occupied

giving the ground state configuration a2
2ue

4
1g. It is important that the occupied molecular

orbitals have net bonding character.
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IX. TERM SYMBOLS IN DIATOMIC MOLECULES

A total many-electron molecular wavefunction can be formed as products of one-electron

molecular orbitals taking into account indistinguishability of electrons. The modulus of the

component of the total orbital angular momentum of a diatomic molecule |LZ | onto

the internuclear axis is usually denoted by the capital Greek letter Λ which can take the

integer values Λ = 0, 1, 2, . . . and the corresponding molecular states are indicated by the

capital Greek letters Σ, Π, ∆, . . ., respectively. More completely, a symbol of a molecular

energy state contains also of a preceding superscript multiplicity index 2S+1, where S is the

total electron spin of the molecule and a subscript symmetry index g, or u (for homonuclear

molecules), which indicates the symmetry of the electron wavefunction under Inversion.

The Σ states have also an additional upper index (+), or (−) depending on the symmetry of

the electron wavefunction under Reflection in the plane containing the internuclear axis.

For example, the notation 2Πu describes the molecular state with a total electron spin S =

1/2, the modulus of the projection of the total angular momentum onto the internuclear axis

Λ = 1, and negative parity of the molecular wavefunction under Inversion. The notation 3Σ+
g

describes the state with a total electron spin S = 1, the projection of the angular momentum

Λ = 0, positive parity of the molecular wavefunction under Inversion, and positive parity of

the molecular wavefunction under Reflection.

Let us now consider relationship between the configuration of one-electron orbitals in

a diatomic molecule and the quantum numbers of the corresponding total many-electron

molecular wavefunction. For molecules with only one valence electron the projection λ is

equal to the corresponding projection Λ. For molecules with several valence electrons, this

relationship is not always so simple and depends on whether these electrons are equivalent,

or not. If they are equivalent, the Pauli principle must be taken into consideration, while

if they are not equivalent, no further restrictions apply. Note, that there is no contribution

from any full inner shell molecular orbitals, therefore, only the valence MOs should be taken

into consideration.
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TABLE I: Molecular Terms: Equivalent Electrons

Electron Configuration Molecular Terms

σ1 2Σ

σ2 1Σ

π1 2Π

π2 1Σ+, 3Σ−, 1∆

π3 2Π

π4 1Σ+

δ1 2∆

δ2 1Σ+, 3Σ−, 1Γ

δ3 2∆

δ4 1Σ+

For example, a σ MO occupied by two electrons forms a 1Σ term because the orbital

angular momentum of each electron is zero and therefore the electrons must have opposite

projections of their spins, which results in zero total spin. For the molecules with one

unpaired electron with its spin s = 1/2, we always get a duplet (S = 1/2) state. With two

unpaired electrons, we obtain a triplet state (S = 1) if the electron spins are parallel to each

other and a singlet state (S = 0) if the electron spins are antiparallel to each other.

The order of the molecular states which correspond to the same electron configuration is

regulated by the Hund’s maximum multiplicity rule: the state with the larger number

of unpaired electrons usually has the lower energy.

The relationship between different configurations of one-electron molecular orbitals and

the corresponding total many-electron molecular wavefunction terms are summarized in

Table I and Table I for equivalent and not equivalent electron shells, respectively.
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TABLE II: Molecular Terms: Non-Equivalent Electrons

Electron Configuration Molecular Terms

σσ 1Σ, 3Σ

σπ 1Π, 3Π

σδ 1∆, 3∆

ππ 1Σ+, 3Σ+, 1Σ−, 3Σ−, 1∆, 3∆

πδ 1Π, 3Π, 1Φ, 3Φ

δδ 1Σ+, 3Σ+, 1Σ−, 3Σ−, 1Γ, 3Γ

σσσ 2Σ+,2Σ+,4Σ+

σσπ 2Π, 2Π, 4Π

σσδ 2∆, 2∆, 4∆

σππ 2Σ+, 2Σ+, 4Σ+, 2Σ−, 2Σ−, 4Σ−, 2∆, 2∆, 4∆
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