
Time-Independent Perturbation Theory
Hamiltonian: H = H0 + V

The known exact solution of the equation We seek for an approximate solution for

H0 ψm
(0)(q) = Em

(0) ψm
(0)(q) (H0 + V) ψ(q) = E ψ(q)

Nondegenerate case:  E(0)
m ≠ E(0)

m´

∑ Ψ=Ψ
m

mm qcq )()( )0(

1. The unknown wavefunction Ψ(q) can be 
expanded over the orthogonal set Ψm

(0)(q)

2. This expansion is substituted to the full-
Hamiltonian Schrödinger equation

3. The obtained expression is multiplied by
Ψn

(0)(q) and then integrated over all q.

4. The obtained expression is solved giving an
approximate values of the energy E and the
coefficients cm .
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Chemical Bonds

Non-Degenerate Case: Solution

First correction to the energy level n
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Example: Harmonic Oscillator
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Chemical Bonds

Time-Independent Perturbation Theory
Hamiltonian: H = H0 + V

The known exact solution of the equation We seek for an approximate solution for

H0 ψn
(0) = E(0) ψn

(0)                                                             (H0 + V) ψ = E ψ

Degenerate case:  E(0)
n = E(0)

n´

1. The zero-approximation wavefunction Ψ(0)(q) can 
be written as superposition of the set Ψn

(0)(q)

2. This expansion is substituted to the full-
Hamiltonian Schrödinger equation

3. The obtained expression is multiplied by
Ψn’

(0)(q) and then integrated over all q.

4. The obtained set of algebraic equations is solved 
giving values of the energies En and the 
coefficients c(0)

n .
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Chemical Bonds

Degenerate Case: Solution
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',δA set of N linear homogeneous 

equations over the coefficients 
c(0)

n and energies En

The determinant must the equal 
to zero. It is equivalent to 
the linear algebraic equation
of the N-th order, which is known
as the  Secular Equation
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Chemical Bonds

Time-Independent Perturbation Theory
Degenerate Case: H2

+ ion 
Schrödinger equation:Coordinate system
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Hamiltonian:

Zero-order wavefunctions
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BBAA HH ΨΨ=ΨΨ=α Coulomb Integral
Molecular wavefunctionResonance IntegralABBA HH ΨΨ=ΨΨ=β
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Chemical Bonds

H2
+ ion:  Solutions

Energies
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Wavefunctions: σ molecular orbitals
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Chemical Bonds

H2
+ ion 

[ ])()( BBAA rrN Ψ+Ψ=Ψ+Bonding σ orbital:

Amplitude representation Contour plot representation



Chemical Bonds

H2
+ ion 

[ ])()( 11 BBAA rrN Ψ−Ψ=Ψ−Antibonding σ* orbital:

Amplitude representation

Contour plot representation

Electron density: |Ψ-|2



Chemical Bonds

H2
+ ion 

H1σg orbital 2σu
* orbital

Eu = (α-β)/(1-S)Eg = (α+β)/(1+S)



Time-Dependent Perturbation Theory
Hamiltonian: H = H0 + V(t)

The known exact solution of the equation We seek for an approximate solution for

iħ∂/∂t ψk
(0)(q,t) = H0ψk

(0)(q,t)             iħ∂/∂t ψ(q,t) = (H0+V(t)) ψ(q,t)

1. The unknown wavefunction Ψ(q,t) can be 
expanded over the orthogonal set Ψk

(0)(q,t)

2. This expansion is substituted to the full-
Hamiltonian Schrödinger equation

3. The obtained expression is multiplied by
Ψn

(0)(q,t) and then integrated over all 
coordinates q.

4. The obtained equation is solved giving an
approximate values of the expansion
coefficients ak(t) .

∑ Ψ=Ψ
k

kk tqtatq ),()(),( )0(

Chemical Bonds



Time-Dependent Perturbation Theory: Solution
Hamiltonian: H = H0 + V(t)

The known exact solution of the equation       We seek for an approximate solution for 

iħ∂/∂t ψk
(0)(q,t) = H0ψk

(0)(q,t)             iħ∂/∂t ψ(q,t) = (H0+V(t)) ψ(q,t)
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Chemical Bonds

The Variation Method

)()( qEqH Ψ=ΨSchrödinger equation to be solved:
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ΨΨ
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Multiplying from the left by Ψ*(q) and 
integrating over q we get:

But we do not know Ψ(q) !
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*Using a probe function Ψpr(q) obeying the 
same boundary conditions as Ψ(q) and 
integrating over q we get:

Variation Theorem
Gives the upper limit 
for the ground state 
energy of the system Egr
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Chemical Bonds

Linear Combination of Atomic Orbitals (LCAO):
Homonuclear Diatomic Molecules 

∑=Ψ
i

ii qcq )()( φ All atomic orbitals of an appropriate symmetry 
can contribute to a molecular orbital

Symmetry of one-electron molecular orbitals

1. Electron axial angular momentum: lz = ± λ ħ λ = 0,  1,  2,  3, …
Orbital  σ,  π,   δ,  φ, …

2. Inversion of the electron wave function in the molecular center of symmetry:

ungeradegerade

σg σu
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Chemical Bonds

Orbital Energy Level Diagrams for Period 1 Diatomic Molecules

Configuration:       1σg 1σg
2 1σg

2 1σu*             1σg
2 1σu*2

σg = Ng (ΦA + ΦB) σ*u = Nu (ΦA - ΦB)

where ΦA, ΦB are atomic 1s orbitals

He2:    Ψg ≈ σg(1) σg(2)σ*u(3) σ*u(4)

H2:  Ψg ≈ σg(1) σg(2)



Chemical Bonds

Hydrogen atom wavefunctions: angular part
pz orbital

l=1, m = 0
px orbital

l=1, m = ±1
py orbital

l=1, m = ±1

s orbital
l=0, m = 0

dz² orbital
l=2, m = 0

dx²-y² orbital
l=2

dxy orbital
l=2

dzx orbital
l=2

dyz orbital
l=2

l=2



Chemical Bonds

Period 2 Diatomic Molecules: 
Li2, Be2, B2, C2, N2, O2, F2, Ne2

These atomic orbitals have the same symmetry and can interact with each other 

s + s

pz + s

pz + pz



Chemical Bonds

Period 2 Diatomic Molecules: σ orbitals
These atomic orbitals have different symmetry and 

cannot interact with each other 

s + px

pz + px



Chemical Bonds

Period 2 Diatomic Molecules
σ orbitals

Ψσ = CA2s ΦA2s + CB2s ΦB2s + CA2pz ΦA2pz +  CB2pz ΦB2pzIn general:

Let us assume that Z axis is parallel to the internuclear axis R

Only 2s and 2pz atomic orbitals
can interact producing    
molecular σ orbitals.

Sometimes, the 2s and 2pz orbitals can be treated separately, as they distinctly different
energies. Then, two 2s orbitals of the two atoms overlap with each other giving a pare of 
σg and σu* molecular orbitals and two 2pz orbitals overlap with each other giving another 
pair of σg and σu* molecular orbitals.



Chemical Bonds

Period 2 Diatomic Molecules: π orbitals
2px and 2py orbitals of both atoms oriented to the same side can produce bonding πu and 
antibonding πg* molecular orbitals. The π2px and π2py orbitals have the same energy, 
thus πu and πg* orbitals can be populated by the maximum four electrons.

π orbitals σ orbitals 



Chemical Bonds

Period 2 Diatomic Molecules: Inversion of π orbitals 



Chemical Bonds

Schematic Diagram for the Energy Orbitals of 
Homonuclear Period 2 Diatomic Molecules

Orbital configuratuion valid for O2 and F2 Orbital configuration valid from Li2 till N2

1σg<1σu<2σg<2σu<3σg<1πu<1πg<3σu 1σg<1σu<2σg<2σu<1πu<3σg<1πg<3σu



Chemical Bonds

Aufbau Principles 

With the orbitals established, we can deduce the ground configuration of the 
molecules by adding the appropriate number of electrons to the orbitals and 
following the Aufbau principles:

• Electron occupy different orbitals approximately in the order of their
energies

• Only two electrons can occupy any non-degenerate orbital 

• An atom, or a molecule in its ground state adopts a configuration with the
greatest number of unpaired electrons (Hund's maximum multiplicity rule)



Chemical Bonds

Bonding Order 

A measure of the net bonding in a diatomic molecule is its bond order, b:

b = ½(n - n*)

where n is the number of electrons in bonding orbitals and n* is the number 
of electrons in antibonding orbitals. 

Examples: 

• H2 b = 1, corresponding to a single bond H -- H,

• He2 b = 0, corresponding to no bond at all.



Chemical Bonds

Electron Structure of the Period 2 Homonuclear 
Diatomic Molecules



Chemical Bonds

Heteronuclear Diatomic Molecules: Polar Bonds
Molecular Orbital Energy Levels 

of HF (simplified) If only two atomic orbitals are involved, 
the one-electron molecular orbital can 
be written as LCAO:

Ψ = cHΦH + cF ΦF

The general Principles

1. The energy levels of the atomic orbitals    
ΦH and ΦF cannot differ too much

2. The symmetry of the atomic orbitals 
must be the same

3. The overlap of the orbitals ΦH and ΦF 
must be high. 

The most likely: |cH|2  < |cF|2

which is called Polar Bond 
and gives the molecule the 
Electric Dipole Moment



Chemical Bonds

Heteronuclear Diatomic Molecules: HF

Molecular Orbital Energy Levels (complete)

H F

nonbonding orbital

nonbonding orbitals

bonding orbital

antibonding orbital

Configuration:    (1σ)2 (2σ)2 (3σ)2 (1π)4 :    1Σ



Chemical Bonds

Heteronuclear Diatomic Molecules: HF

Three-dimensional plot of a one-electron bonding orbital 



Chemical Bonds

Hybridization of Atomic Orbitals:  LiH 
Correlation Diagram for 

Lithium Hydride Molecule

Approximate Molecular orbitals:

| 1σ > ≈ | 1s Li >

| 2 σ > ≈ – 0,47 |sp1 Li > – 0,88 | 1s H >

“True” molecular orbitals:

| 1σ > ≈ | 1s Li >

| 2σ > ≈ 0.33| 2s Li > – 0.21| 2pz Li > – 0.70| 1s H >

where

|sp1 Li > = 2-½ (– |2sLi> + |2pzLi>)

|sp2 Li > = 2-½ (– |2sLi> – |2pzLi>)

The orbitals |sp1 Li> and |sp2 Li> are called sp hybrid atomic orbitals



Chemical Bonds

sp Hybridization of Atomic Orbitals



Chemical Bonds

Hydrogen Atom Wavefunctions: Radial Part
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Chemical Bonds

Heteronuclear Diatomic Molecules:  LiH

Molecular Orbital Energy Levels                           Wavefunction Contour plot

Approximate Molecular orbitals:

| 1σ > ≈ | 1s Li >

| 2 σ > ≈ – 0,47 |sp1 Li > – 0,88 | 1s H >



Correlation Diagram for the Water Molecule:
Unmodified Atomic Orbitals 

| 1σ > = cO| 2pzO > + cH|1sHA>

| 2σ > = cO| 2pYO > + cH|1sHB>

Ground state configuration

Bonding orbitals

(1sO)2(2sO)2(2pXO)2(1σ)2(2σ)2

However, these results disagree 
with the experimental value of the 
bond angle of 104.5o and with
the known fact that the H-atoms 
in H2O molecule are equivalent!

Chemical Bonds



Chemical Bonds

sp3 Hybridization of Atomic Orbitals

|2sp31> = ½(–|2s>+|2px>+|2py>+|2pz>)

|2sp32> = ½(–|2s>+|2px>–|2py>–|2pz>)

|2sp33> = ½(–|2s>–|2px>+|2py>–|2pz>)

|2sp34> = ½(–|2s>–|2px>–|2py>+|2pz>)

Tetrahedral hybrid orbitals

The angle between any two of the 
axes shown is called the
tetrahedral angle and 
approximately equal to 109 degrees.

Connecting the four alternative corners of a cube with 
line segments constructs a regular tetrahedron



Chemical Bonds

Correlation Diagram for the Water Molecule: 
2sp3 Hybrid Orbitals

Bonding orbitals

| σA> = cO| 2sp32 > + cH|1sHA>

| σB > = cO| 2sp33 > + cH|1sHB>

Ground state configuration

(1sO)2(2sp31)2(2sp34)2(σA)2(σB)2



Chemical Bonds

Electron Pair-Bond Approach

Conditions

• Both partners provide one suitable orbital each for building 
the molecular bond.

• Two electrons are needed for the bond: each partner can 
contribute one electron, or both electrons can be contributed
by one partner.

The electron pair bond approach is closely related to the valence-bond theory
which was the first quantum mechanical theory of  bonding.  Although this 
theory has undergone less much computational development than the 
molecular orbital theory we explained above, it is very
useful for qualitative explanation and widely used throughout chemistry.



Chemical Bonds

2sp3 Hybrid Orbitals: methane molecule (CH4)
Electron pair-bond approach

C atom

Bonding through 
two sp hybrid

orbitals
Bonding through 

two 2p orbitals
Bonding through 
sp3 hybrid orbitals



Chemical Bonds

sp2 Hybridization of Atomic Orbitals 

Trigonal planar hybrid orbitals

|2sp21> = 1/√3( – |2s> + √2|2pz>)

|2sp22> = 1/√3(– |2s> – 1/√2 |2pz> + √3/√2 |2px>)

|2sp23> = 1/√3 (– |2s> – 1/√2 |2pz> – √3/√2 |2px>)

Three hybrid orbitals lie in a plane 
and point toward the corners of an 
equivalent triangle.  The third 2p orbital,
(2py)  is not included in the hybridization:
its axis is perpendicular to the plane 
where the hybrids lie.  The trigonal hybrid
orbitals are important in describing the 
structure of planar molecules.



Chemical Bonds

Molecules with π Electron Systems: 
Double and Triple Bonds



Chemical Bonds

π-Orbitals in ethene (C2H4)

For planar molecules the σ bonds are nodeless with respect to the 
molecular plane and the π bonds have a node in the molecular plane.

The hybrid orbitals which can fit the symmetry of  the C2H4 molecule is
the trigonal sp2 orbital described above.

The frontier orbitals can be calculated using the Hückel approximations:

• Only the frontier π orbitals are calculated, while the lower energy σ orbitals
are assumed to form a rigid framework that determines the general shape 
of the molecule.

• All the C atoms are treated identically, so all Coulomb integrals α for the 
atomic orbitals which contribute to the π orbitals are set equal.

• All overlap integrals S are set equal to zero.

• Only the resonance integrals between the neighbor C atoms are set
nonzero and all equal to β.



Chemical Bonds

π-Orbitals in ethene C2H4
The two π orbitals in C2H4 can be expressed as LCAO of two C2pZ
orbitals,  ΦA and ΦB which are perpendicular to the molecular plane:

Ψ = cA ΦA + cB ΦB

For obtaining the expansion coefficients cA and cB and the energies 
we have to solve the second-order secular determinant:

0=
−

−
E

E
αβ
βα

where the exchange integral is assumed to be zero, S = 0.

The solution are two energies:    E± = α ± β

where the energy E+ corresponds to the bonding orbital and the
energy E- corresponds to the antibonding orbital. The Aufbau principle 
leads to the configuration 1π2 where each carbon atom supplies one 
electron to the π bond.



Chemical Bonds

π-Orbitals in ethene (C2H4)
The molecule can be viewed as system where π electrons move relatively
freely and are extending over the entire molecular skeleton which is formed 
by the σ electrons. The Frontier π orbitals are of particular importance:

⎧ HOMO:  The Highest Occupied Molecular Orbital
The Frontier π Orbitals  ⎨

⎩ LUMO:  The Lowest Unfilled Molecular Orbitals

HOMO

LUMO



Chemical Bonds

π-Orbitals in Butadiene (C4H6)
There are four 2pZ orbitals from each of the four C atom which form 
four π molecular orbitals contributing to the double bonds. The π orbitals 
in C4H6 can be expressed by as LCAO of four C2pZ orbitals:

Ψ = c1 Φ1 + c2 Φ2 + c3 Φ3 + c4 Φ4

For obtaining the expansion coefficients c1 – c4 and the energies 
we have to solve the fourth-order secular determinant:
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which is equivalent to the fourth-order algebraic equation. 
The solution are four energies E1 – E4 and four sets of the coefficients 
ci, where i = 1,2,3,4.



Chemical Bonds

π-Orbitals in Butadiene (C4H6)

1-2, 3,4 antibonding
2-3 bonding

Throughout antibonding
1-2-3-4

Throughout bonding
1-2-3-4

1-2, 3,4 bonding
2-3 antibonding



Chemical Bonds

σ Framework in Benzene (C6H6):

sp2 hybrid orbitals of C and s orbitals of H



Chemical Bonds

π-Orbitals in Benzene (C6H6)

Throughout antibonding
1-2-3-4-5-6

Mixture of  bonding, antibonding, 
and nonbonding 

Mixture of  bonding, antibonding, 
and nonbonding 

Throughout bonding
1-2-3-4-5-6


	Wolfgang Ernst Pauli

