Time-Independent Perturbation Theory

Hamiltonian: H=H, +V

The known exact solution of the equation We seek for an approximate solution for

How,,9(q) = E, g, (q) (Ho + V) w(q) = E w(q)

Nondegenerate case: E©_#EO .

. The unknown wavefunction ¥(q) can be
expanded over the orthogonal set ¥ _(%(q)

. This expansion is substituted to the full-
Hamiltonian Schrodinger equation \P(q) _ Z c yO (CI)
m m
m

. The obtained expression is multiplied by
¥ (9)(q) and then integrated over all q.

. The obtained expression is solved giving an
approximate values of the energy E and the
coefficients c .
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Non-Degenerate Case: Solution

First correction to the energy level n

E, ~EP + [w (q)V ¥ (@) dg=(nV n)

First correction to the wavefunction ¥,

kv
¥, (q) = ¥ () + Zi <(0)‘ ‘n(>o) Y (g)
En _Ek

Second correction to the energy level n
2
(k¥ [n)

E,~EY +EV +3,
n n n 0 0
EY —EY
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Example: Harmonic Oscillator
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Time-Independent Perturbation Theory

Hamiltonian: H=H, +V

The known exact solution of the equation We seek for an approximate solution for

H0 an(o) = E(0) lpn(o) (HO + V) Y= E Y

Degenerate case: E© =E®© .

. The zero-approximation wavefunction ¥(0)(q) can
be written as superposition of the set ¥ _(0(q) 0 0 0
" YO (@)= ¢’ ¥, (a)
n

. This expansion is substituted to the full-
Hamiltonian Schrodinger equation

. The obtained expression is multiplied by
¥ (9(q) and then integrated over all q.

. The obtained set of algebraic equations is solved
giving values of the energies E_ and the
coefficients ¢ .

Chemical Bonds



Degenerate Case: Solution

A set of N linear homogeneous : 0)
equations over the coefficients Z (<n ’V ‘n > — 5n,n’ En )Cn‘ — O

c®_and energies E n’
V11 -E V12 VlN
The determinant must the equal
i : V21 V22 -E - V2N
to zero. It is equivalent to -0

the linear algebraic equation
of the N-th order, which is known
as the Secular Equation VNl VNZ VNN -E

Chemical Bonds



Time-Independent Perturbation Theory
Degenerate Case: H,* ion

Coordinate system Schroédinger equation: HY =E¥
Hamiltonian: H=H,+V
2 2
HAo:_h R [1+1_1j
2m, A\ ry, Iz R

Secular equation:
Zero-order wavefunctions

a—E pB-ES
ﬂ_ES a—E B B e—rA/a0 :ﬂ
LPA_(ﬁag’)m e (ﬂag)“z

a:<lPA‘H‘lPA>:<\PB‘H‘\PB> Coulomb Integral
Molecular wavefunction

¥=c,¥,+c, ¥,

ﬁ:<\PA‘H‘\PB> _ <\PB‘H‘\PA> Resonance Integral

S=<\PA‘\PB> Exchange Integral Chemical Bonds



H,* ion: Solutions

Energies
o+ o —
AT e, 2=/
o <0 1+S 1-S
p<0 . .
Wavefunctions: ¢ molecular orbitals
¥ = N[, (r,)+ ¥y (r)] Y= N[¥,(r) - ¥ (rp)]
Bonding Molecular Orbital Antibonding Molecular Orbital
—r la -1 /48
e A 0 e B 0 1
LIIA — LIJ — N =
(ﬂag’)llz ° (7[ ag )1/2 [2(1+ S)]ll2

Normalization Factor
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H,* ion

Bonding o orbital: Y, = N LP a(ry) + W (rg )]

Amplitude representation Contour plot representation

Boundary
surface

_

Chemical Bonds




H,* ion

Antibonding o” orbital: Y =N [‘{’A(I’Al) - ¥, (I‘Bl)]

Amplitude representation

Contour plot representation

)

®) Electron density: |V |2

Chemical Bonds



Region of
constructive
interference

o

N

10, orbital 0.4 L
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E, = (a+B)/(1+S)
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H,* ion

Experimental

Calculated

20"
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Region of
destructive
interference

o)
N\
N

20, orbital

E, = (a-B)/(1-S)



Time-Dependent Perturbation Theory
Hamiltonian: H = H, + V(t)

The known exact solution of the equation We seek for an approximate solution for

in’/ ot W%(q:t) = Hyw,%q.t) in’/ ot W(a.t) = (Ho+V(t)) w(q,t)

. The unknown wavefunction ¥(q,f) can be
expanded over the orthogonal set ¥, (9(q,{)

. This expansion is substituted to the full-
Hamiltonian Schrodinger equation

_ (0)
. The obtained expression is multiplied by ¥ (q,t) —Z a, (t) ¥, (q,t)
¥ (0)(q,t) and then integrated over all k
coordinates q.

. The obtained equation is solved giving an
approximate values of the expansion

coefficients a,(t) .

Chemical Bonds



Time-Dependent Perturbation Theory: Solution
Hamiltonian: H = H, + V(t)

The known exact solution of the equation We seek for an approximate solution for
in%l ~ w 9(q,t) = H, w,0(qt in®/ t) = (H,+V(t)) (gt
ot P(a,t) = Hyw,(q,t) in~/ 5 w(g,t) = (Ho+V(t) w(q.t)

Y(a,t)=> a(t) ¥ (a.t)

. 0al" - i |
in——=(k\N|0)e'" a® (t) =—— [ (kv|0)e' > dz
The population rate of the state |k> Important particular case:
V =— u-Ecos(wt)=—u,E, cos(wt)
d \a&” Q)

Wieco = (kv jo)f

W, ., oc (K|, [0)| E?
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The Variation Method
Schrodinger equation to be solved: HY(q)=E¥(q)

Multiplying from the left by ¥*(q) and J‘\P (a) H ¥ (q)dg
integrating over g we get: J'\P (q) ¥(q)dg

But we do not know Y¥(q) !

Using a probe functio.n. ¥,,(q) obeying the ~ j\{lpr (q) H \Ppr (g)dq
same boundary conditions as ¥(q) and <H >
integrating over g we get: j\Ppr (9) ¥, (q)dq

Variation Theorem

Gives the upper limit

<|:| > >E,, = 5<I:I > =0  forthe ground state

energy of the system E,

Chemical Bonds



Linear Combination of Atomic Orbitals (LCAO):
Homonuclear Diatomic Molecules

N — C.& All atomic orbitals of an appropriate symmetry
(CI) Z '¢' (q) can contribute to a molecular orbital

Symmetry of one-electron molecular orbitals

1. Electron axial angular momentum: | =4 ; p A =0, 1, 2, 3,...
‘ Orbital o, &, 8, 0, ...

2. Inversion of the electron wave function in the molecular center of symmetry:

Region of
destructive

gerade s igm ungerade

=
=Q




Wolfgang Ernst Pauli

Nobelpreis 1945

*25. April 1900 in Wien
+ 15. Dez. 1958 in Zurich




Orbital Energy Level Diagrams for Period 1 Diatomic Molecules

—, —
G r ¥ 0
. . R [ R Y K +
' + . . . . . T
r . » ] . * - .
Y + . +
G . - .
¥ * ' ' ¥ * * *
. . - . ! Y !
- 4 . 0
\ % + Y +
' [

+ +
HJ H, He; He,
. . . 2 2 * 2 *2
Configuration: 1o, 1o, 10,410, 10,210,

o.g = Ng (¢A+ q)B) O'*u = Nu (q)A- q>B)

where ®,, ®; are atomic 1s orbitals
Hy: W,=0,(1) 0,(2)

—  antibonding MO
He,: W, =o,(1) 04(2)0",(3) o%,(4) / / .
\ . y -
Chemical Bonds ——  bonding MO




Hydrogen atom wavefunctions: angular part

p, orbital p, orbital p, orbital
I=1,m=0 I=1, m = %1 I=1, m = 1

s orbital
I=0,m=20

d,... orbital
1=2

d, orbital d,, orbital

d,, orbital =2 s =2

1=2




Period 2 Diatomic Molecules:
Liz, Bez, Bz, Cz, N2, 02, Fz, Ne2

These atomic orbitals have the same symmetry and can interact with each other

S+sS
2p, 18
pz+ S Z
pz + pz 4c*

Chemical Bonds 0 w---—v‘“”o

30




Period 2 Diatomic Molecules: o orbitals

These atomic orbitals have different symmetry and
cannot interact with each other

(b) region of
constructive
(a) / overlap
s + px V4
\ region of
destructive
overlap
P, + Py z

2p,  2p,

Chemical Bonds



Period 2 Diatomic Molecules
o orbitals

In general: ¥, = Cazs Pazs + Cras Pras + Cazpz Pazpz + Ciapz Py

()

Let us assume that Z axis is parallel to the internuclear axis R

2s 2s
Only 2s and 2p, atomic orbitals

can interact producing
molecular o orbitals. -

Sometimes, the 2s and 2p, orbitals can be treated separately, as they distinctly different
energies. Then, two 2s orbitals of the two atoms overlap with each other giving a pare of
o4 and c,* molecular orbitals and two 2p, orbitals overlap with each other giving another
pair of 6, and c,* molecular orbitals.

Chemical Bonds



Period 2 Diatomic Molecules: = orbitals

2p, and 2p, orbitals of both atoms oriented to the same side can produce bonding =, and
antibonding n;* molecular orbitals. The n2p, and n2p, orbitals have the same energy,

thus =, and n,* orbitals can be populated by the maximum four electrons.

(a) (b)
QO ..

—, —,
¥ Y * +

e —

]
Y
. . i [y
- G
[ [
’ ¥
[ [
» -
- % i Y
. L] . *
0 . h T
¥ . - "
’ * . LY
+ "
! b i !
- * ¥ [
r . ’ )
’ » 0 .
v . .
. *
+ .
r 0
[ [
¥ v
* . * -
Y + . a
. 0 * r
Y 3 * B

O-.-O 2p0g Q 2pm,

o orbitals nt orbitals
Chemical Bonds



Period 2 Diatomic Molecules: Inversion of 1 orbitals

2p mt  bonding MO 2p T, anti-bonding MO

Chemical Bonds



Schematic Diagram for the Energy Orbitals of
Homonuclear Period 2 Diatomic Molecules

(a) (b)
30,
2pG,, . 30, 'i’n!:g mu
Eﬂ T - .rl .‘m&:‘ 1 TEg 3‘:' '-.:-:a
2 P Il'.f‘:‘. _.-:"
=f "'_ 3o :'-,_ -'::r"_:"
2p "‘t“‘ -‘|I q & '1_;-' t; ‘_:
Ep nu l: I.—:.-!.:1 Eu Eﬁu_al':; _I-.l I:.i
2P oy — 30, 25 &
2s IIIl--' o, 2‘3:1 2a a
| AQOs on . ADs on
‘ atom 1 MOs  iomo
25 I—
?5c g ; EGQ
AOs an ACs on
alom 1 MOs giom 2
Orbital configuratuion valid for O, and F, Orbital configuration valid from Li, till N,

Chemical Bonds
164<16,<264<20,<304<17,<174<30,, 164<16,<264<20,<17,<36,<11,<30,,



Aufbau Principles

With the orbitals established, we can deduce the ground configuration of the
molecules by adding the appropriate number of electrons to the orbitals and
following the Aufbau principles:

» Electron occupy different orbitals approximately in the order of their
energies

* Only two electrons can occupy any non-degenerate orbital

* An atom, or a molecule in its ground state adopts a configuration with the
greatest number of unpaired electrons (Hund's maximum multiplicity rule)

Chemical Bonds



Bonding Order

A measure of the net bonding in a diatomic molecule is its bond order, b:
b = 2(n - n¥)

where n is the number of electrons in bonding orbitals and n* is the number
of electrons in antibonding orbitals.

Examples:
*H, b=1, corresponding to a single bond H -- H,

* He, b =0, corresponding to no bond at all.

Chemical Bonds



Electron Structure of the Period 2 Homonuclear
Diatomic Molecules

17,

*
20,

26

Chemical Bonds



Heteronuclear Diatomic Molecules: Polar Bonds

Molecular Orbital Energy Levels

f HF (simplifi
o (simplified) If only two atomic orbitals are involved,

the one-electron molecular orbital can
be written as LCAO:

lonization limit ¥ =c, @+ cp O

A A A A
The general Principles
= = > >
© o [} () . -
© <t 0 © 1. The energy levels of the atomic orbitals
- L - - ®,, and @, cannot differ too much
2. The symmetry of the atomic orbitals
must be the same
3. The overlap of the orbitals ®, and &
0.98y(H) must be high.
i — 0.19y/(F)
H1s The most likely: |c,|? < |cg|?
which is called Polar Bond
0.19y(H) and gives the molecule the
+0.98y(F) | " F2p Electric Dipole Moment

Chemical Bonds



Heteronuclear Diatomic Molecules: HF

Molecular Orbital Energy Levels (complete)

H F

4o antibonding orbital
1s .—‘

nonbonding orbitals 1z 2p,, 2py“'-,.‘ %—Al! -

bonding orbital 30 ‘O —H—
nonbonding orbital 20 f # ------ —. 2s

Configuration: (10)?(20)?(3c)? (17)4: D>

Chemical Bonds




HF

Heteronuclear Diatomic Molecules

Three-dimensional plot of a one-electron bonding orbital

H
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S
Lt Bty Ty g e By,
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Ciital Energy |seham afic|

Hybridization of Atomic Orbitals: LiH

Correlation Diagram for “True” molecular orbitals:

Lithium Hydride Molecule
|1lo>=|1s Li>

b . .
P |20 >= 0.33] 2s Li > 0.21] 2p, Li > — 0.70| 1s H >
25 5
§ — Approximate Molecular orbitals:
1=
26 |1o>=]|1s Li>

|20 >=-0,47 |sp1Li>—-0,88|1s H >

where
1s - |sp1 Li > = 2" (- |2sLi> + |2p,Li>)
Bhm owhee ot [sp2 Li > = 2% (~ [2sLi> - 2p,Li>)

The orbitals |sp1 Li> and |sp2 Li> are called sp hybrid atomic orbitals

Chemical Bonds



sp Hybridization of Atomic Orbitals

{m)
+
g
|
Lipl
(b}

Chemical Bonds




Hydrogen Atom Wavefunctions: Radial Part

R/(Z/a,)*"?

(@)

R/(Z/ag)*?

2s

04r

0.3

0.2

R/(Z/ay)*?

0.1}

3s

0.1

R/(Z/ay)*"?

0.05

(d)

R/(Z/ag)*"?

0.1

0.05f

3p

Zrla,

7.5 15 22.5
Zrla,
3d
I I I
7.5 15 22.5



Heteronuclear Diatomic Molecules: LiH

Molecular Orbital Energy Levels Wavefunction Contour plot

Li '
- L]

28

—15
20 —H—

Approximate Molecular orbitals:

| 1o >=|1s Li>

|20>=-0,47 |sp1Li>-0,88|1s H>

Chemical Bonds



Orbital energy (schematic) —————»

Correlation Diagram for the Water Molecule:
Unmodified Atomic Orbitals

—l_f_ /zpzo2px0

+

250

1sO

Ato_mic Molecular Atomic Molecular Atomic
orbitals orbitals orbitals orbitals orbitals

Chemical Bonds

Bonding orbitals

| 16 > = ¢,| 2p,0 > + c4|1sH, >
| 26 > = c,| 2p,O > + cy|1sHg>

Ground state configuration

(150)%(250)%(2px0)?*(15)*(20)?

However, these results disagree
with the experimental value of the
bond angle of 104.5° and with

the known fact that the H-atoms
in H,O molecule are equivalent!



sp3 Hybridization of Atomic Orbitals

: Tetrahedral hybrid orbitals

[25p%1> = Ya(~|25>+(2p,>+(2p,>+|2p,>)

25p3.4 direction

2sp3,1 direction

i — 12sp32> = '4(—|28>+|2p,>—|2p >—|2p,>)

[25p33> = Y4(—|25>|2p,>+|2p,>—|2p,>)
2sp3,2 direction 2sp3,3 direction
(a)

|2sp34> = "/2(—|2s>—|2p,>—|2p >+|2p,>)

D

{between axes)

2531 tetrahedral angle and
approximately equal to 109 degrees

> b W The angle between any two of the
e | @aXesS shown is called the
2s
(

Connecting the four alternative corners of a cube with
line segments constructs a regular tetrahedron

Chemical Bonds



Orbital energy (schematic)

Correlation Diagram for the Water Molecule:
2sp3 Hybrid Orbitals

1sHA 1sHB
2p (replaced) / Bonding orbitals

_H_/ | c6A> = ¢c,| 2sp32 > + cy|1sH >
2sp3

. — 3
250 (replaced) | 6B > = cy| 2sp°3 > + c|1sHz>

Ground state configuration

(1s0)3(2sp31)3(2sp34)3(cA)3(cB)?

+

150
Oxygen
atomic
Hydrogen orbitals Hydrogen
atomic Molecular (with Molecular atomic

orbitals orbitals hybridization) orbitals orbitals



Electron Pair-Bond Approach
Conditions

* Both partners provide one suitable orbital each for building
the molecular bond.

* Two electrons are needed for the bond: each partner can
contribute one electron, or both electrons can be contributed
by one partner.

The electron pair bond approach is closely related to the valence-bond theory
which was the first quantum mechanical theory of bonding. Although this
theory has undergone less much computational development than the
molecular orbital theory we explained above, it is very

useful for qualitative explanation and widely used throughout chemistry.

Chemical Bonds



2sp3 Hybrid Orbitals: methane molecule (CH,)

Electron pair-bond approach

@ g g (b) i (©) H
b ._(lj—H Hg/c TH

\
\

o g i
2D e e el
C atom 2ZAE I.u -2 "'@1/2AE & -Li 3/4AE

Bonding through
Bonding through two sp hybrid Bonding through

two 2p orbitals ChemiggliBands. sp3 hybrid orbitals



sp? Hybridization of Atomic Orbitals

Trigonal planar hybrid orbitals

[25p21> = 1/ 5( - [28> + 2]2p,>)

Ax
|28p22> = 1I\/3(_ |2$> o 1/\/2 |2pz> + \/3l\/2 |2px>)
12sp23> =1/ ; (- |28> - 1/, [2p,> — P/, |2p,>)
(Y Y20
@ >~ Three hybrid orbitals lie in a plane

and point toward the corners of an
equivalent triangle. The third 2p orbital,
(2p,) is not included in the hybridization:
its axis is perpendicular to the plane
where the hybrids lie. The trigonal hybrid
orbitals are important in describing the
structure of planar molecules.

Chemical Bonds



Molecules with 7t Electron Systems:
Double and Triple Bonds

H
7 X % \ v
Jp/ Epeiigy
Ethene Butadiene Benzene

H-SC=¢*H" B-C=C—C=C—H H—C=N

Ethyne Diethyne Hydrogen cyanide
(@)
b E _2 Pz sp? hybrid P
p 1S 2 0. 0 Y
2s A8 promotion 2 hybridization =f=-fef
S o
Is a8 a8 28
(b)
Px Py Pz sp hybrid Py P
2p 2.8 2 6 & AR e 2.8
2s A8 promotion o hybridization
r— —
Is @8 [ 1] 28




n—Orbitals in ethene (C,H,)

For planar molecules the ¢ bonds are nodeless with respect to the
molecular plane and the = bonds have a node in the molecular plane.

The hybrid orbitals which can fit the symmetry of the C,H, molecule is
the trigonal sp? orbital described above.

The frontier orbitals can be calculated using the Huickel approximations:

* Only the frontier = orbitals are calculated, while the lower energy c orbitals
are assumed to form a rigid framework that determines the general shape

of the molecule.

« All the C atoms are treated identically, so all Coulomb integrals o for the
atomic orbitals which contribute to the & orbitals are set equal.

« All overlap integrals S are set equal to zero.

* Only the resonance integrals between the neighbor C atoms are set
nonzero and all equal to .

Chemical Bonds



n—Orbitals in ethene C,H,

The two & orbitals in C,H, can be expressed as LCAO of two C2p,
orbitals, ®, and ®g which are perpendicular to the molecular plane:

Y =c, O,+cg Dy

For obtaining the expansion coefficients c, and cg; and the energies
we have to solve the second-order secular determinant:

a—E i
p a—-E

where the exchange integral is assumed to be zero, S = 0.

The solution are two energies: E,= at f

where the energy E, corresponds to the bonding orbital and the
energy E_corresponds to the antibonding orbital. The Aufbau principle

leads to the configuration 172 where each carbon atom supplies one
electron to the n bond.

Chemical Bonds



n—Orbitals in ethene (C,H,)

The molecule can be viewed as system where & electrons move relatively
freely and are extending over the entire molecular skeleton which is formed
by the o electrons. The Frontier = orbitals are of particular importance:

[ HOMO: The Highest Occupied Molecular Orbital

The Frontier = Orbitals 1
| LUMO: The Lowest Unfilled Molecular Orbitals

LUMO 2r*  a-p ) O

C2p C2p

HOMO a+p

1 A
|

|
Y
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n—Orbitals in Butadiene (C,Hg)

There are four 2p, orbitals from each of the four C atom which form
four = molecular orbitals contributing to the double bonds. The & orbitals
in C,H, can be expressed by as LCAO of four C2p, orbitals:

Y=c,O;,+Cc, O, +Cc; O;+C, D,

For obtaining the expansion coefficients c, — ¢, and the energies
we have to solve the fourth-order secular determinant:

a—-E f 0 0
p  a-E p 0 0
0 s a-E p
0 0 g a-E

which is equivalent to the fourth-order algebraic equation.
The solution are four energies E, — E, and four sets of the coefficients

c;, where i =1,2,3 4.

Chemical Bonds



4™

3n*

21

1§14

n—Orbitals in Butadiene (C,Hg)

J J % % Throughout antibonding
1-2-3-4

o —1.623
. Q © O Q 1-2, 3,4 antibonding
o —0.62f @ 0 0 /; 2-3 bonding
o +0.623
\ *‘ 1-2, 3,4 bonding
2-3 antibonding
o+ 1.623

Throughout bonding
1-2-3-4

Chemical Bonds



O Framework in Benzene (CgH):

sp? hybrid orbitals of C and s orbitals of H

Chemical Bonds



n—Orbitals in Benzene (CgH)

" i

bag Throughout antibonding

7 J

uf\=.==

P

&>

1-2-3-4-5-6

Mixture of bonding, antibonding,
and nonbonding

Mixture of bonding, antibonding,
and nonbonding

Throughout bonding

1-2-3-4-5-6

Chemical Bonds
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