Time-Independent Perturbation Theory

Hamiltonian: $\mathbf{H}=\mathbf{H}_{\mathbf{0}} \mathbf{+}$

The known exact solution of the equation

$$
H_{0} \Psi_{m}^{(0)}(q)=E_{m}^{(0)} \Psi_{m}^{(0)}(q) \quad\left(H_{0}+V\right) \Psi(q)=E \Psi(q)
$$

Nondegenerate case: $E^{(0)}{ }_{m} \neq E^{(0)}{ }_{m}$

1. The unknown wavefunction $\Psi(q)$ can be expanded over the orthogonal set $\Psi_{m}{ }^{(0)}(q)$
2. This expansion is substituted to the fullHamiltonian Schrödinger equation
3. The obtained expression is multiplied by

$$
\Psi(q)=\sum_{m} c_{m} \Psi_{m}^{(0)}(q)
$$ $\Psi_{\mathrm{n}}{ }^{(0)}(q)$ and then integrated over all q.

4. The obtained expression is solved giving an approximate values of the energy E and the coefficients c_{m}.

Non-Degenerate Case: Solution

First correction to the energy level n

$$
E_{n} \approx E_{n}^{(0)}+\int \Psi_{n}^{(0)^{*}}(q) V \Psi_{n}^{(0)}(q) d q=\langle n| V|n\rangle
$$

First correction to the wavefunction Ψ_{n}

$$
\Psi_{n}(\boldsymbol{q}) \approx \Psi_{n}^{(0)}(\boldsymbol{q})+\sum_{\boldsymbol{k}}^{\prime} \frac{\langle\boldsymbol{k}| \boldsymbol{V}|\boldsymbol{n}\rangle}{\boldsymbol{E}_{\boldsymbol{n}}^{(0)}-\boldsymbol{E}_{\boldsymbol{k}}^{(0)}} \Psi_{k}^{(0)}(\boldsymbol{q})
$$

Second correction to the energy level n

$$
\boldsymbol{E}_{\boldsymbol{n}} \approx \boldsymbol{E}_{\boldsymbol{n}}^{(0)}+\boldsymbol{E}_{\boldsymbol{n}}^{(1)}+\sum_{\boldsymbol{k}}^{\prime} \frac{|\langle\boldsymbol{k}| \boldsymbol{V}| \boldsymbol{n}\rangle\left.\right|^{2}}{\boldsymbol{E}_{\boldsymbol{n}}^{(0)}-\boldsymbol{E}_{\boldsymbol{k}}^{(0)}}
$$

Example: Harmonic Oscillator

$$
\boldsymbol{H}=-\frac{\hbar^{2}}{2 \boldsymbol{m}} \frac{\boldsymbol{d}^{2}}{\boldsymbol{d} \boldsymbol{x}^{2}}+\frac{\boldsymbol{k} \boldsymbol{x}^{2}}{2}
$$

$$
E_{v}=(v+1 / 2) v_{e}
$$

$$
\boldsymbol{H}=-\frac{\hbar^{2}}{2 \boldsymbol{m}} \frac{\boldsymbol{d}^{2}}{\boldsymbol{d} \boldsymbol{x}^{2}}+\frac{\boldsymbol{k} \boldsymbol{x}^{2}}{2}+\alpha \boldsymbol{x}^{3}+\boldsymbol{\beta} \boldsymbol{x}^{4} \quad \mathrm{E}_{\mathrm{v}}=(\mathrm{v}+1 / 2) v_{\mathrm{e}}-(\mathrm{v}+1 / 2)^{2} v_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}+(\mathrm{v}+1 / 2)^{3} v_{\mathrm{e}} \mathbf{y}_{\mathrm{e}}
$$

Time-Independent Perturbation Theory

Hamiltonian: $\mathbf{H}=\mathbf{H}_{\mathbf{0}} \mathbf{+}$

The known exact solution of the equation

$$
H_{0} \Psi_{n}^{(0)}=E^{(0)} \Psi_{n}^{(0)}
$$

We seek for an approximate solution for

$$
\left(H_{0}+V\right) \Psi=E \Psi
$$

Degenerate case: $\mathrm{E}^{(0)}{ }_{n}=\mathrm{E}^{(0)} \mathrm{n}^{\prime}$.

1. The zero-approximation wavefunction $\Psi^{(0)}(q)$ can be written as superposition of the set $\Psi_{n}{ }^{(0)}(q)$
2. This expansion is substituted to the full-

$$
\Psi^{(0)}(q)=\sum_{n} c_{n}^{(0)} \Psi_{n}^{(0)}(q)
$$ Hamiltonian Schrödinger equation

3. The obtained expression is multiplied by $\Psi_{n}{ }^{(0)}(q)$ and then integrated over all q.
4. The obtained set of algebraic equations is solved giving values of the energies E_{n} and the coefficients $\boldsymbol{C}^{(0)}{ }_{n}$.

Degenerate Case: Solution

A set of N linear homogeneous equations over the coefficients $c^{(0)}{ }_{n}$ and energies E_{n}

$$
\sum_{n^{\prime}}\left(\langle n| V\left|n^{\prime}\right\rangle-\delta_{n, n^{\prime}} E_{n}\right) c_{n^{\prime}}^{(0)}=0
$$

The determinant must the equal to zero. It is equivalent to the linear algebraic equation of the N-th order, which is known as the Secular Equation

$$
\left|\begin{array}{cccc}
V_{11}-E & V_{12} & \cdots & V_{1 N} \\
V_{21} & V_{22}-E & \cdots & V_{2 N} \\
\cdots & \cdots & \cdots & \cdots \\
V_{N 1} & V_{N 2} & \cdots & V_{N N}-E
\end{array}\right|=0
$$

Time-Independent Perturbation Theory Degenerate Case: $\mathrm{H}_{2}{ }^{+}$ion

Coordinate system

Secular equation:

$$
\left|\begin{array}{cc}
\alpha-E & \beta-E S \\
\beta-E S & \alpha-E
\end{array}\right|=0
$$

$\alpha=\left\langle\Psi_{A}\right| H\left|\Psi_{A}\right\rangle=\left\langle\Psi_{B}\right| H\left|\Psi_{B}\right\rangle \quad$ Coulomb Integral
$\beta=\left\langle\Psi_{A}\right| H\left|\Psi_{B}\right\rangle=\left\langle\Psi_{B}\right| H\left|\Psi_{A}\right\rangle \quad$ Resonance Integral
$S=\left\langle\Psi_{A} \mid \Psi_{B}\right\rangle$ Exchange Integral Chemical Bonds

Schrödinger equation: $H \Psi=E \Psi$

Hamiltonian:
$\hat{H}=\hat{H}_{0}+\hat{V}$
$\hat{H}_{0}=-\frac{\hbar^{2}}{2 m_{e}} \Delta \quad \hat{V}=-\frac{e^{2}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{A}}+\frac{1}{r_{B}}-\frac{1}{R}\right)$

Zero-order wavefunctions

$$
\Psi_{A}=\frac{e^{-r_{A} / a_{0}}}{\left(\pi a_{0}^{3}\right)^{1 / 2}} \quad \Psi_{B}=\frac{e^{-r_{B} / a_{0}}}{\left(\pi a_{0}^{3}\right)^{1 / 2}}
$$

$\mathrm{H}_{2}{ }^{+}$ion: Solutions

Energies

$\alpha<0$
$\beta \leq 0$

$$
E_{2}=\frac{\alpha-\beta}{1-S}
$$

Wavefunctions: σ molecular orbitals

$$
\Psi_{+}=N\left[\Psi_{A}\left(r_{A}\right)+\Psi_{B}\left(r_{B}\right)\right]
$$

Bonding Molecular Orbital

$$
\Psi_{A}=\frac{\boldsymbol{e}^{-\boldsymbol{r}_{A} / \boldsymbol{a}_{0}}}{\left(\pi \boldsymbol{a}_{0}^{3}\right)^{1 / 2}} \quad \Psi_{B}=\frac{e^{-r_{B} / a_{0}}}{\left(\pi a_{0}^{3}\right)^{1 / 2}}
$$

$$
\Psi_{-}=N\left[\Psi_{A}\left(r_{A}\right)-\Psi_{B}\left(r_{B}\right)\right]
$$

Antibonding Molecular Orbital

$$
N=\frac{1}{[2(1+S)]^{1 / 2}}
$$

Normalization Factor

$\mathrm{H}_{2}{ }^{+}$ion

Bonding σ orbital:

Amplitude representation

$$
\Psi_{+}=N\left[\Psi_{A}\left(r_{A}\right)+\Psi_{B}\left(r_{B}\right)\right]
$$

(b)

Contour plot representation

Chemical Bonds

$\mathrm{H}_{2}{ }^{+}$ion

Antibonding σ^{*} orbital: $\quad \Psi_{-}=N\left[\Psi_{A}\left(r_{A 1}\right)-\Psi_{B}\left(r_{B 1}\right)\right]$

Amplitude representation

Contour plot representation

Electron density: |世_| ${ }^{2}$

Time-Dependent Perturbation Theory

$$
\text { Hamiltonian: } \mathbf{H}=\mathbf{H}_{0}+\mathbf{V}(\mathbf{t})
$$

The known exact solution of the equation

$$
i \hbar^{\partial} / \partial \mathrm{t} \Psi_{\mathrm{k}}{ }^{(0)}(q, t)=\mathrm{H}_{0} \Psi_{\mathrm{k}}{ }^{(0)}(q, \mathrm{t}) \quad i \hbar^{\partial} / \partial \mathrm{t} \Psi(q, t)=\left(\mathrm{H}_{0}+\mathrm{V}(\mathrm{t})\right) \Psi(q, t)
$$

1. The unknown wavefunction $\Psi(q, t)$ can be expanded over the orthogonal set $\Psi_{k}{ }^{(0)}(q, t)$
2. This expansion is substituted to the fullHamiltonian Schrödinger equation
3. The obtained expression is multiplied by $\Psi_{\mathrm{n}}{ }^{(0)}(q, t)$ and then integrated over all

$$
\Psi(q, t)=\sum_{k} a_{k}(t) \Psi_{k}^{(0)}(q, t)
$$

coordinates q.
4. The obtained equation is solved giving an approximate values of the expansion coefficients $\boldsymbol{a}_{\mathrm{k}}(\mathrm{t})$.

Time-Dependent Perturbation Theory: Solution

 Hamiltonian: $\mathbf{H}=\mathbf{H}_{\mathbf{0}} \mathbf{+} \mathbf{V}(\mathrm{t})$The known exact solution of the equation

$$
\begin{aligned}
& \mathrm{in}^{\partial} / \partial \mathrm{t} \boldsymbol{\Psi}_{\mathrm{k}}{ }^{(0)}(\boldsymbol{q}, \mathrm{t})=\mathrm{H}_{0} \boldsymbol{\Psi}_{\mathrm{k}}{ }^{(0)}(\boldsymbol{q}, \mathrm{t}) \\
& \mathrm{in}{ }^{\partial} /_{\partial \mathrm{t}} \boldsymbol{\Psi}(\boldsymbol{q}, \mathrm{t})=\left(\mathrm{H}_{0}+\mathrm{V}(\mathrm{t})\right) \boldsymbol{\Psi}(\mathrm{q}, \mathrm{t}) \\
& \Psi(q, t)=\sum_{k} a_{k}(t) \Psi_{k}^{(0)}(q, t) \\
& i \hbar \frac{\partial a_{k}^{(1)}}{\partial t}=\langle k| V|0\rangle e^{i \omega_{\sigma_{0} t}} \quad \Rightarrow \quad a_{k}^{(1)}(t)=-\frac{i}{\hbar} \int_{0}^{t}\langle k| V|0\rangle e^{i \omega_{k 0} \tau} d \tau
\end{aligned}
$$

The population rate of the state |k>

$$
\left.W_{k \leftarrow 0}=\frac{d\left|a_{k}^{(1)}(t)\right|^{2}}{d t} \propto|\langle k| V| 0\right\rangle\left.\right|^{2}
$$

We seek for an approximate solution for

Important particular case:

$$
V=-\mu \cdot \mathbf{E} \cos (\omega t)=-\mu_{z} E_{z} \cos (\omega t)
$$

$$
\left.W_{k \leftarrow 0} \propto\left|\langle k| \mu_{z}\right| 0\right\rangle\left.\right|^{2} E_{z}^{2}
$$

The Variation Method

Schrödinger equation to be solved: $\quad H \Psi(q)=E \Psi(q)$

Multiplying from the left by $\Psi^{*}(q)$ and integrating over q we get:

$$
E=\frac{\int \Psi^{*}(q) \hat{H} \Psi(q) d q}{\int \Psi^{*}(q) \Psi(q) d q}
$$

But we do not know $\Psi(q)$!

Using a probe function $\Psi_{\mathrm{pr}}(q)$ obeying the same boundary conditions as $\Psi(q)$ and integrating over q we get:

$$
\langle\hat{H}\rangle=\frac{\int \Psi_{p r}^{*}(q) \hat{H} \Psi_{p r}(q) d q}{\int \Psi_{p r}^{*}(q) \Psi_{p r}(q) d q}
$$

Variation Theorem

$$
\langle\hat{H}\rangle \geq E_{g r} \quad \Rightarrow \quad \delta\langle\hat{H}\rangle=0
$$

Gives the upper limit for the ground state energy of the system $E_{g r}$

Linear Combination of Atomic Orbitals (LCAO): Homonuclear Diatomic Molecules

$$
\Psi(q)=\sum_{i} c_{i} \phi_{i}(q)
$$

All atomic orbitals of an appropriate symmetry can contribute to a molecular orbital

Symmetry of one-electron molecular orbitals

1. Electron axial angular momentum:

$$
\begin{array}{ll}
I_{z}= \pm \lambda \hbar & \lambda \quad=0,1,2,3, \ldots \\
& \text { Orbital } \sigma, \pi, \delta, \phi, \ldots
\end{array}
$$

2. Inversion of the electron wave function in the molecular center of symmetry:
gerade
Region of
constructive interference
σ_{g}

ungerade

Wolfgang Ernst Pauli

Nobelpreis 1945

* 25. April 1900 in Wien
+ 15. Dez. 1958 in Zürich

Orbital Energy Level Diagrams for Period 1 Diatomic Molecules

Configuration: $1 \sigma_{\mathrm{g}}$

He_{2}^{+}

He_{2}
$1 \sigma_{g}{ }^{2}$
$1 \sigma_{\mathrm{g}}{ }^{2} 1 \sigma_{\mathrm{u}}{ }^{*}$
$1 \sigma_{g}{ }^{2} 1 \sigma_{u}{ }^{* 2}$

$$
\sigma_{\mathrm{g}}=\mathrm{N}_{\mathrm{g}}\left(\Phi_{\mathrm{A}}+\Phi_{\mathrm{B}}\right) \quad \sigma_{\mathrm{u}}^{*}=\mathrm{N}_{\mathrm{u}}\left(\Phi_{\mathrm{A}}-\Phi_{\mathrm{B}}\right)
$$

where Φ_{A}, Φ_{B} are atomic 1s orbitals

$$
H_{2}: \Psi_{g} \approx \sigma_{g}(1) \sigma_{g}(2)
$$

$\mathrm{He}_{2}: \quad \Psi_{\mathrm{g}} \approx \sigma_{\mathrm{g}}(1) \sigma_{\mathrm{g}}(2) \sigma_{\mathrm{u}}{ }_{\mathrm{u}}(3) \sigma_{\mathrm{u}}{ }_{\mathrm{u}}(4)$

Hydrogen atom wavefunctions: angular part

Period 2 Diatomic Molecules: $\mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Ne}_{2}$

These atomic orbitals have the same symmetry and can interact with each other

$$
s+s
$$

$$
p_{z}+p_{z}
$$

Chemical Bonds

Period 2 Diatomic Molecules: σ orbitals

These atomic orbitals have different symmetry and
cannot interact with each other

$p_{z}+p_{x}$

Chemical Bonds

Period 2 Diatomic Molecules
 σ orbitals

In general: $\quad \Psi_{\sigma}=\mathrm{C}_{\mathrm{A} 2 \mathrm{~s}} \Phi_{\mathrm{A} 2 \mathrm{~s}}+\mathrm{C}_{\mathrm{B} 2 \mathrm{~s}} \Phi_{\mathrm{B} 2 \mathrm{~s}}+\mathrm{C}_{\mathrm{A} 2 \mathrm{pz}} \Phi_{\mathrm{A} 2 \mathrm{pz}}+\mathrm{C}_{\mathrm{B} 2 \mathrm{pz}} \Phi_{\mathrm{B} 2 \mathrm{pz}}$

Let us assume that \mathbf{Z} axis is parallel to the internuclear axis \mathbf{R}

Only $2 s$ and $2 p_{z}$ atomic orbitals can interact producing molecular σ orbitals.

Sometimes, the 2 s and $2 \mathrm{p}_{\mathrm{z}}$ orbitals can be treated separately, as they distinctly different energies. Then, two 2 s orbitals of the two atoms overlap with each other giving a pare of σ_{g} and $\sigma_{u}{ }^{*}$ molecular orbitals and two $2 p_{z}$ orbitals overlap with each other giving another pair of σ_{g} and $\sigma_{\mathrm{u}}{ }^{*}$ molecular orbitals.

Period 2 Diatomic Molecules: π orbitals

$2 p_{x}$ and $2 p_{y}$ orbitals of both atoms oriented to the same side can produce bonding π_{u} and antibonding $\pi_{\mathrm{g}}{ }^{*}$ molecular orbitals. The $\pi 2 p_{\mathrm{x}}$ and $\pi 2 p_{\mathrm{y}}$ orbitals have the same energy, thus π_{u} and $\pi_{\mathrm{g}}{ }^{*}$ orbitals can be populated by the maximum four electrons.

σ orbitals

π orbitals

Period 2 Diatomic Molecules: Inversion of π orbitals

$2 p \pi_{u}$ bonding MO

$2 p \pi_{g}$ anti-bonding MO

Schematic Diagram for the Energy Orbitals of Homonuclear Period 2 Diatomic Molecules

Orbital configuratuion valid for O_{2} and F_{2}
Orbital configuration valid from Li_{2} till N_{2} $1 \sigma_{g}<1 \sigma_{u}<2 \sigma_{g}<2 \sigma_{u}<3 \sigma_{g}<1 \pi_{u}<1 \pi_{g}<3 \sigma_{u} \quad$ Chemical Bonds $\quad 1 \sigma_{g}<1 \sigma_{u}<2 \sigma_{g}<2 \sigma_{u}<1 \pi_{u}<3 \sigma_{g}<1 \pi_{g}<3 \sigma_{u}$

Aufbau Principles

With the orbitals established, we can deduce the ground configuration of the molecules by adding the appropriate number of electrons to the orbitals and following the Aufbau principles:

- Electron occupy different orbitals approximately in the order of their energies
- Only two electrons can occupy any non-degenerate orbital
- An atom, or a molecule in its ground state adopts a configuration with the greatest number of unpaired electrons (Hund's maximum multiplicity rule)

Bonding Order

A measure of the net bonding in a diatomic molecule is its bond order, b :

$$
b=1 / 2\left(n-n^{*}\right)
$$

where \boldsymbol{n} is the number of electrons in bonding orbitals and \boldsymbol{n}^{*} is the number of electrons in antibonding orbitals.

Examples:

- $\mathrm{H}_{2} \quad b=1$, corresponding to a single bond $\mathrm{H}-\mathrm{H}$,
- $\mathrm{He}_{2} \boldsymbol{b}=0$, corresponding to no bond at all.

Electron Structure of the Period 2 Homonuclear Diatomic Molecules

Chemical Bonds

Molecular Orbital Energy Levels
of HF (simplified)

Chemical Bonds

If only two atomic orbitals are involved, the one-electron molecular orbital can be written as LCAO:

$$
\Psi=\mathbf{c}_{\mathrm{H}} \Phi_{\mathrm{H}}+\mathbf{c}_{\mathrm{F}} \Phi_{\mathrm{F}}
$$

The general Principles

1. The energy levels of the atomic orbitals Φ_{H} and Φ_{F} cannot differ too much
2. The symmetry of the atomic orbitals must be the same
3. The overlap of the orbitals Φ_{H} and Φ_{F} must be high.

The most likely: $\left|c_{H}\right|^{2}<\left|c_{F}\right|^{2}$
which is called Polar Bond and gives the molecule the Electric Dipole Moment

Heteronuclear Diatomic Molecules: HF

Molecular Orbital Energy Levels (complete)

nonbonding orbital

Configuration: $(1 \sigma)^{2}(2 \sigma)^{2}(3 \sigma)^{2}(1 \pi)^{4}: \quad{ }^{1} \Sigma$

Heteronuclear Diatomic Molecules: HF

Three-dimensional plot of a one-electron bonding orbital

Chemical Bonds

Correlation Diagram for
Lithium Hydride Molecule

The orbitals |sp1 Li> and |sp2 Li> are called sp hybrid atomic orbitals

Chemical Bonds

sp Hybridization of Atomic Orbitals

(a)

(b)

Chemical Bonds

Hydrogen Atom Wavefunctions: Radial Part

Heteronuclear Diatomic Molecules: LiH

Molecular Orbital Energy Levels

Approximate Molecular orbitals:

```
| 1\sigma > \approx| 1s Li >
| 2\sigma> \approx - 0,47 |sp1 Li> - 0,88| 1s H >
                        Chemical Bonds
```


Correlation Diagram for the Water Molecule: Unmodified Atomic Orbitals

Bonding orbitals

$$
\begin{aligned}
& \left|1 \sigma>=c_{\mathrm{O}}\right| 2 p_{\mathrm{Z}} \mathrm{O}>+\mathrm{c}_{\mathrm{H}} \mid 1 \mathrm{~s} H_{\mathrm{A}}> \\
& \left|2 \sigma>=c_{\mathrm{O}}\right| 2 p_{\mathrm{Y}} O>+c_{\mathrm{H}} \mid 1 \mathrm{sH} H_{B}>
\end{aligned}
$$

Ground state configuration
$(1 \mathrm{sO})^{2}(2 \mathrm{sO})^{2}\left(2 p_{\mathrm{x}} \mathrm{O}\right)^{2}(1 \sigma)^{2}(2 \sigma)^{2}$

However, these results disagree with the experimental value of the bond angle of 104.5° and with the known fact that the H -atoms in $\mathrm{H}_{2} \mathrm{O}$ molecule are equivalent!

Chemical Bonds
sp³ Hybridization of Atomic Orbitals

Tetrahedral hybrid orbitals

$$
\begin{aligned}
& \mid 2 s p^{3} 1>=1 / 2\left(-\left|2 s>+\left|2 p_{x}>+\left|2 p_{y}>+\right| 2 p_{z}>\right)\right.\right. \\
& \mid 2 s p^{3} 2>=1 / 2\left(-\left|2 s>+\left|2 p_{x}>-\left|2 p_{y}>-\right| 2 p_{z}>\right)\right.\right. \\
& \mid 2 s p^{3} 3>=1 / 2\left(-\left|2 s>-\left|2 p_{x}>+\left|2 p_{y}>-\right| 2 p_{z}>\right)\right.\right. \\
& \mid 2 s p^{3} 4>=1 / 2\left(-\left|2 s>-\left|2 p_{x}>-\left|2 p_{y}>+\right| 2 p_{z}>\right)\right.\right.
\end{aligned}
$$

The angle between any two of the axes shown is called the tetrahedral angle and approximately equal to 109 degrees

Connecting the four alternative corners of a cube with line segments constructs a regular tetrahedron

Correlation Diagram for the Water Molecule: 2sp ${ }^{3}$ Hybrid Orbitals

Bonding orbitals $\left|\sigma A>=c_{o}\right| 2 s p^{3} 2>+c_{H} \mid 1 s H_{A}>$ $\left|\sigma B>=c_{o}\right| 2 s^{3} 3>+c_{H} \mid 1 s H_{B}>$
Ground state configuration $(1 \mathrm{sO})^{2}\left(2 \mathrm{sp}^{3} 1\right)^{2}\left(2 \mathrm{sp}^{3} 4\right)^{2}(\sigma \mathrm{~A})^{2}(\sigma B)^{2}$

	$\frac{1}{7}$			
	1 s			
		Oxygen atomic		
Hydrogen atomic orbitals	Molecular orbitals	orbitals (with hybridization)	Molecular orbitals	Hydrogen atomic orbitals

Electron Pair-Bond Approach

Conditions

- Both partners provide one suitable orbital each for building the molecular bond.
- Two electrons are needed for the bond: each partner can contribute one electron, or both electrons can be contributed by one partner.

The electron pair bond approach is closely related to the valence-bond theory which was the first quantum mechanical theory of bonding. Although this theory has undergone less much computational development than the molecular orbital theory we explained above, it is very useful for qualitative explanation and widely used throughout chemistry.

2sp³ Hybrid Orbitals: methane molecule $\left(\mathrm{CH}_{4}\right)$
Electron pair-bond approach

C atom

Bonding through two sp hybrid

Bonding through sp^{3} hybrid orbitals
sp² Hybridization of Atomic Orbitals

Trigonal planar hybrid orbitals

$$
\left|2 s p^{2} 1>=1 / \sqrt{ } 3\left(-|2 s\rangle+\sqrt{ } 2\left|2 p_{z}\right\rangle\right)\right.
$$

$$
\begin{aligned}
& \left.\left|2 s p^{2} 2>=1 / \sqrt{ } 3\left(-|2 s>-1 / \sqrt{ } 2| 2 p_{z}\right\rangle+\sqrt{ } 3 / \sqrt{ } 2\right| 2 p_{x}>\right) \\
& \mid 2 s p^{2} 3>={ }^{1} / \sqrt{ } 30\left(-|2 s>-1 / \sqrt{ } 2| 2 p_{z}>-\sqrt{ } 3 / \sqrt{ } 2 \mid 2 p_{x}>\right)
\end{aligned}
$$

Three hybrid orbitals lie in a plane and point toward the corners of an equivalent triangle. The third $2 p$ orbital, $\left(2 p_{y}\right)$ is not included in the hybridization: its axis is perpendicular to the plane where the hybrids lie. The trigonal hybrid orbitals are important in describing the structure of planar molecules.

Molecules with π Electron Systems: Double and Triple Bonds

π-Orbitals in ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$

For planar molecules the σ bonds are nodeless with respect to the molecular plane and the π bonds have a node in the molecular plane.

The hybrid orbitals which can fit the symmetry of the $\mathrm{C}_{2} \mathrm{H}_{4}$ molecule is the trigonal sp^{2} orbital described above.

The frontier orbitals can be calculated using the Hückel approximations:

- Only the frontier π orbitals are calculated, while the lower energy σ orbitals are assumed to form a rigid framework that determines the general shape of the molecule.
- All the \mathbf{C} atoms are treated identically, so all Coulomb integrals α for the atomic orbitals which contribute to the π orbitals are set equal.
- All overlap integrals S are set equal to zero.
- Only the resonance integrals between the neighbor C atoms are set nonzero and all equal to β.

π-Orbitals in ethene $\mathrm{C}_{2} \mathrm{H}_{4}$

The two π orbitals in $\mathrm{C}_{2} \mathrm{H}_{4}$ can be expressed as LCAO of two $\mathrm{C}^{2} \mathrm{p}_{\mathrm{z}}$ orbitals, Φ_{A} and Φ_{B} which are perpendicular to the molecular plane:

$$
\Psi=\mathbf{c}_{\mathrm{A}} \Phi_{\mathrm{A}}+\mathbf{c}_{\mathrm{B}} \Phi_{\mathrm{B}}
$$

For obtaining the expansion coefficients c_{A} and c_{B} and the energies we have to solve the second-order secular determinant:

$$
\left|\begin{array}{cc}
\alpha-E & \beta \\
\beta & \alpha-E
\end{array}\right|=0
$$

where the exchange integral is assumed to be zero, $S=0$.
The solution are two energies: $\quad E_{ \pm}=\alpha \pm \beta$
where the energy E_{+}corresponds to the bonding orbital and the energy $E_{\text {_ }}$ corresponds to the antibonding orbital. The Aufbau principle leads to the configuration $1 \pi^{2}$ where each carbon atom supplies one electron to the π bond.

π-Orbitals in ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$

The molecule can be viewed as system where π electrons move relatively freely and are extending over the entire molecular skeleton which is formed by the σ electrons. The Frontier π orbitals are of particular importance:

The Frontier π Orbitals $\left\{\begin{array}{l}\text { HOMO: The Highest Occupied Molecular Orbital } \\ \text { (LUMO: The Lowest Unfilled Molecular Orbitals }\end{array}\right.$

LUMO

HOMO

Chemical Bonds

π-Orbitals in Butadiene $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$

There are four $2 p_{z}$ orbitals from each of the four C atom which form four π molecular orbitals contributing to the double bonds. The π orbitals in $\mathrm{C}_{4} \mathrm{H}_{6}$ can be expressed by as LCAO of four $\mathrm{C} 2 \mathrm{p}_{\mathrm{z}}$ orbitals:

$$
\Psi=c_{1} \Phi_{1}+c_{2} \Phi_{2}+c_{3} \Phi_{3}+c_{4} \Phi_{4}
$$

For obtaining the expansion coefficients $\mathrm{c}_{1}-\mathrm{c}_{4}$ and the energies we have to solve the fourth-order secular determinant:

$$
\left|\begin{array}{cccc}
\alpha-E & \beta & 0 & 0 \\
\beta & \alpha-E & \beta & 0 \\
0 & \beta & \alpha-E & \beta \\
0 & 0 & \beta & \alpha-E
\end{array}\right|=0
$$

which is equivalent to the fourth-order algebraic equation.
The solution are four energies $E_{1}-E_{4}$ and four sets of the coefficients c_{i}, where $i=1,2,3,4$.

π-Orbitals in Butadiene $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$

σ Framework in Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$:

sp^{2} hybrid orbitals of C and s orbitals of H
Chemical Bonds

π-Orbitals in Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$

Throughout antibonding

1-2-3-4-5-6

Mixture of bonding, antibonding, and nonbonding

Mixture of bonding, antibonding, and nonbonding

Throughout bonding
1-2-3-4-5-6

Chemical Bonds

