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I. OPTICAL TRANSITIONS IN MOLECULES: INTRODUCTION

The origin of spectral lines in molecular spectroscopy is the absorption, emission, and

scattering of a proton when the energy of a molecule changes. In atomic spectroscopy,

all transitions reflect changes in the configuration of electrons. In molecules, in addition,

there are energy states corresponding to nuclei vibrations and rotations. In consequence,

the molecular spectra are more complex than atomic spectra and contain information on

the molecular structure and the bond strength. They also provide a way of determining

a variety of molecular properties, like dipole and quadrupole moments and the quantum

numbers characterizing all molecular degrees of freedom. The molecular spectroscopy is

also important for astrophysical and environmental science, for investigation of chemical

reactions, for biology, and in many other areas of science and technology which needs detailed

investigation of properties of microscopic atomic and molecular objects.

In the Born-Oppenheimer approximation the energy of a molecule can be presented as

sum of electronic energy Eel, vibrational energy Evib and rotational energy Erot energy.

E = Eel + Evib + Erot (1)

The energy difference corresponding to the excitation of electrons ∆Eel = hνel in this

approximation is much larger that the energy difference corresponding to the molecular

vibration ∆Evib = hνvib which is large that the energy difference corresponding to the

molecular rotations ∆Erot = hνrot:

hνel À hνvib À hνrot (2)

Usually, transitions within the rotation energy levels manifold belong to the far infrared

and microwave spectral region, transitions within the vibrational energy levels manifold

belong to the infrared spectral region, and the transitions between the electronic energy levels

belong to the visible, or ultraviolet spectral region. In general, the vibrational transitions

result in changes in the rotational mode and the electronic transitions result in changes in

the rotational and vibrational modes as well. Selection rules determine whether transitions

are allowed or not.

As discussed above the Time-Dependent Perturbation Theory shows that the probability

of absorbing a light photon by a molecule is proportional to

Wk←0 ∝ |〈k|µZ |0〉|2 E2
z , (3)
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where 〈k|µZ |0〉 is the matrix element of the transition dipole moment:

〈k|µZ |0〉 =
∫

Ψk
∗µzΨ0dq (4)

and Ψ0 and Ψk denote the wave functions of the molecular initial and excited states, respec-

tively.

Absorbing the photon a molecule passes from its initial (ground) state to the excited state.

Here we assume that the electric vector of light E (the light polarization vector) is parallel

to the laboratory Z axis. As shown in eq. (3) the rate of the transition is proportional to

E2
Z , and therefore, to the intensity I of the incident radiation and is also proportional to the

squire of the Z component of the dipole moment matrix element 〈k|µz|0〉. In general, the

total molecular dipole moment is a vector which can be presented as

~µ =
∑

i

qi~ri, (5)

where qi is the charge of the i-th particle (electron, or nucleus), ~ri is the radius-vector of the

i-the particle, and summation is proceeded over all electrons and nuclei of the molecule.

This matrix element in eq. (4) depends on the symmetry of both molecular states which

are indicated by the corresponding quantum numbers. For some particular quantum num-

bers of the initial and excited molecular states the matrix element 〈k|µZ |0〉 can be equal

to zero, the corresponding optical transition is called forbidden transition. The relation-

ship between the quantum numbers of the initial and excited molecular states for which the

transition matrix element is not zero are known as transition selection rules.

II. OPTICAL TRANSITIONS AND SPECTRAL LINES

A. Einstein Coefficients

In emission spectroscopy a molecule undergoes a transition from a high energy state

E1 to a state of lower energy E2 and emits the excess energy as a photon. In absorption

spectroscopy the absorption of nearly monochromatic incident radiation is monitored as

function of the radiation frequency. Anyway, the energy of the emitted, or absorbed photon

hν is given by the Bohr formula

hν = E1 − E2 (6)
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These are two convenient units which are often used by spectroscopists for characterizing

a transition energy:

λ =
c

ν
and ν̄ =

ν

c
, (7)

where the wavelength λ is measured in nanometers, microns, or Angströms (1Å = 0, 1nm)

and the units of wavenumber ν̄ are almost always chosen as reciprocal centimeters (cm−1).

It is easy to see that ν̄ = 1/λ.

Emission and absorption spectroscopy give the same information about energy level sep-

aration and only practical considerations generally determine which technique is employed.

As known from the Einstein theory of radiation spontaneous decay of the excited state

E1 can be described by the equation

dN1

dt
= −A12 ·N1 (8)

where N1 is population of the level 1 and A12 is the Einstein coefficient of spontaneous

emission.

This equation has the evident solution

N1(t) = N1(t = 0) · e−A12·t (9)

The life time τ of the state is defined as the time needed for a reduction of the level

population by a factor of 1/e. Thus,

τ =
1

A12

(10)

If the molecule is initially in its lower state 2 interacting with incident radiation the

transition rate of the stimulated absorption from the state 2 to the state 1 is

w′ = B21 · ρ, (11)

where ρdν is the radiation energy density and B21 is the Einstein coefficient of stimulated

absorption.

If the molecule is initially in its upper state 1 interacting with incident radiation popu-

lation of the state 2 through stimulated emission transition obeys the equation

w = B12 · ρ, (12)

where B12 is the Einstein coefficient of stimulated emission.
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Relationship between all three Einstein coefficients is as follows

B21

B12

=
g1

g2

and A12 =

(
8πhν3

c3

)
·B12 (13)

where g1 and g2 are the multiplicities of degeneracy of the corresponding states. If the

degeneracy of both states is the same, we have

B21 = B12 (14)

B. The Intensity of Spectral Lines: Absorption

In absorption spectroscopy the ratio of the transmitted light intensity to the incident

light intensity at a given frequency is called transmittance, T of the sample:

T =
I

I0

(15)

According to the Lambert-Beer law, the transmitted light intensity varies with the

sample length l as

I = I0e
−σ N l, (16)

where σ is an absorption cross section and N is the number of molecules per volume (con-

centration). Adequate units are: cm2 for σ, cm−3 for N , and and cm for l.

Another form of eq. (16) which is widely used in laboratory practice is

I = I010−ε c l, (17)

where ε is the extinction coefficient and c is a molar concentration :

c =
n

V
=

number of molecules

NAV
= N/NA, (18)

where NA is the Avogadro number, NA ≈ 6.022 10−23mol−1. The appropriate units are

mole/liter ([molL−1]) for c and [Lmol−1cm−1] for ε.

Each of the coefficient σ and ε can be determined from experimental data

ln(
I

I0

) = −ε c l ln(10) = −σ N l, (19)

where the I, σ and ε are function of the light frequency ν.

In case if the exponent factor α = σ N l in eq.(16) is small compare to unity α ¿ 1 the

exponential function can be expanded over α. Keeping in this expansion only first two terms
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one comes to the important for practice particular case called low optical density of the

sample:

I = I0(1− σ N l). (20)

Integrating the expression in eq.(20) over the light frequency within the absorption peak,

one obtains the integrated cross section < σ >

< σ >=
∫

σdν = Bmn
hν0

c
, (21)

where Bmn is the Einstein absorption coefficient and ν0 is the center of the molecular ab-

sorption line.

Thus the Einstein coefficient Bmn can be directly determined from experiment.

C. Spectral Line Shape

1. Lifetime Broadening

It is found that spectroscopic lines from gas-phase samples are not initially sharp.The

same is true for the spectra from solid state and solutions. There are several reasons for the

spectral line broadening. One them is due to quantum mechanical effects. Particularly, if

the quantum mechanical system is changing with time it is impossible to specify the energy

levels exactly.If the system survives in a quantum state for a time τ , the energy of the level

in principle cannot be known with accuracy better than spontaneous decay spontaneous

decay

δE ≈ h̄

τ
(22)

This is fundamental uncertainty relation for energy. In principle, no excited state

has infinite lifetime, thus all excited states are subject of the lifetime broadening and the

shorter the lifetimes of the states involved in a transition, the broader the corresponding

spectral lines. These are two main processes which are responsible to the finite lifetime of

excited states.

Firstly, there is the spontaneous decay which is proportional to the corresponding Einstein

coefficient A. The intensity the spontaneous decay is proportional to the square of the matrix

element of interaction with electromagnetic modes of vacuum and in principle cannot

be changed. However, for some particular pairs of the energy states these matrix elements
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can be very small, the corresponding states are called metastable states Of cause, the

transition intensity from these states is very small.

Secondly, there is interaction between the molecular quantum states and other particles.

In the gas phase this interaction is just inelastic collisions with surrounding particles. In

the condensed matter there can be interaction with phonons (vibration of the surrounding

lattice). The collision frequency in the gas phase can be reduced by decreasing the number

of molecules in the, or by decreasing their velocity (temperature).

In both cases the finite lifetime results in a specific spectral line shape which is called

Lorentz line shape:

I(ν) ∝ 1

π

γ/2

(ν − ν0)2 + γ2/4
, (23)

where γ is the excited state decay rate, γ = 1/2πτ and ν0 is the line center.

The Lorentz line is a bell-shaped with characteristic linewidth of ∆νL = γ. The natural

lifetimes of electronic transitions are very much shorter than that for vibrational and ro-

tational transitions. For example, a typical electronic excited state at the energy of about

several eV has a lifetime of about 10−8s, corresponding to a natural linewidth of about

15MHz (5 · 10−4cm−1). A typical rotational state lifetime is about 103 s, corresponding to

a natural linewidth of 10−4 Hz (5 · 10−15cm−1).

This broadening of the line due to collisions and the respective width is called the ho-

mogenous line width because the collisions are isotropic. Under atmospheric conditions,

collisions occur within intervals of nanoseconds and we observe widths of a few GHz (109Hz).

This value decrease linearly with the gas pressure. In liquids the collisions are much more

often resulting in collision times in the picosecond time scale. Therefore, the width of a

single transition in liquid is usually about several THz, (1012Hz) corresponding linewidth

of a few nanometers for transitions in the ultraviolet spectral range of about 300 nm.

In contrast, the line width is said to be inhomogeneous if the anisotropic collisions

or interactions occur. Particularly, inhomogeneous line broadening is typical for certain

atoms in the lattice of a solid medium.

2. Doppler Broadening

Another example of the inhomogeneous line broadening is so called Doppler broad-

ening which is typical in gaseous samples. As known, the Doppler effect results in light
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frequency shift when the source is moving toward, or away from the observer. When a source

emitting radiation with frequency ν0 moves with a speed v, the observer detects radiation

with frequency:

ν = ν0

(
1± vz

c

)
, (24)

where the sign + and − is related to an approaching and receding source, respectively.

Molecules in a gas chaotically move in all directions and the observer detects the cor-

responding Doppler-broadened spectral line profile. This profile reflects the distribution of

molecular velocities along the line of detection, which we designate as Z axis. In case of the

thermal equilibrium this velocity distribution is known as Maxwell-Boltzmann distribution:

n(vz)dvz =

√
2 k T

π m
exp

(
−mv2

z

2 k T

)
(25)

Here n(vz)dvz is a relative number of atoms with the velocity component vz parallel to

the light beam, m is the particle mass, k is the Boltzmann constant, and T is the gas

temperature.

Combining eqs.(25) and (24), we can get the expression for the light intensity as function

of ν

I(ν) = I0

√
4 ln2

π

1

∆νD

exp

(
−4 ln2

(ν − ν0)
2

∆ν2
D

)
where ∆νD =

2 ν0

c

√
2 ln2 k T

m
(26)

The value ∆νD (Doppler width) is the linewidth of the distribution at the half-hight.

The distribution (26) is of the Gaussian type and it is called the Doppler profile.

It is seen that the Doppler width νD is proportional to the transition frequency ν0, to

the square root of the gas temperature T , and inverse to the squire root of the particle

mass. For transitions which belong to the visible or the near-UV spectral range when the

gas temperature is around 300 K, the Doppler width is typically within one GHz. However,

the hydrogen atoms and molecules has exceptionally high Doppler widths of around 30 GHz

due to their low mass. For the visible part of the spectrum the Doppler line broadening is

usually much larger than the lifetime broadening. Therefore, the experimentally obtained

line profiles have usually the Gaussian shape. In contrast, for microwave transitions, or in

conditions of high collisional broadening, the lifetime broadening becomes larger than the

Doppler one resulting in the Lorentz-type line profiles.
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In case δνL and δνD have have comparable amplitudes, the observed spectral line can be

obtained by the convolution of the Gaussian and Lorentz profiles:

I(ν) = C
∫ ∞

0

exp
(
− c

vp

(ν0−ν′)
ν0

)2

(ν − ν ′)2 + γ2/4
dν ′ where vp =

√
2 k T

m
(27)

This intensity profile is called the Voigt profile. For example, Voigt profiles play an

important role in the spectroscopy of stellar atmospheres where accurate measurements of

line wings allow the contributions of Doppler broadening, or natural linewidth of collision

line broadening to be separated. From this measurements the temperature and pressure of

the emitting or absorbing layers in the stellar atmospheres can be determined.

III. EXPERIMENTAL TECHNIQUES

A. Sources of Radiation

There are two important types of light sources used in spectroscopy: polychromatic and

monochromatic sources. The polychromatic sources span a wide range of frequencies. For

instance, many commercial spectrometers use light sources which emit radiation similar to

black-body radiation from hot materials. For far-infrared spectral range within 35 cm−1 <

ν̄ < 200 cm−1, a typical source is a mercury arc inside a quartz envelope where most of

the radiation is generated by the hot quartz. Either a Nernst filament (ceramic with

ZrO, Y tO, T lO, ets.), or a globar (SiC) is used as a source of mid-infrared radiation within

200 cm−1 < ν̄ < 4000 cm−1. Tungsten filaments is used in the visible and near infrared

spectral range 320 nm < λ < 2500 nm.

Different types of gas discharge lamps are common light sources in ultraviolet and

visible spectral region 180 nm < λ < 800 nm. In a xenon discharge lamp an electrical

discharge excites xenon atoms to excited states which then emit ultraviolet radiation. At

high pressure (several kPa) the output of a xenon lamp consists of sharp lines superimposed

on a board intense background due to emission from plasma. High pressure xenon lamps are

widely used as a source of radiation which is similar to the black body radiation at 6000 K.

There are also many other widely used lamps which use discharge in deuterium, mercury,

neon, krypton and produce polychromatic many-line radiation at different wave lengths.

Very important modern source of radiation from IR till X-rays spectral range is syn-
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chrotron radiation. A typical synchrotron storage ring consists of a high energy electron

beam travelling in a circular path many meters in diameter. The electrons move around the

circle under influence of a strong magnetic field which is perpendicular to the circle plane

and generate radiation in very wide spectral range. The polychromatic beam is dispersed

by a diffraction grating and quasi monochromatic radiation is separated by a slit. Except

in the microwave region, synchrotron radiation is much more intense than can be obtained

by most other conventional sources.

The monochromatic sources span a very narrow range of frequencies around a central

value. Convenient monochromatic sources in the near IR-UV spectral range (200 nm < λ <

800 nm) are electrodeless lamps containing a small amount of a chemical element at the

pressure of about 10−3 Pa and a few Pa of inert gas Ne. Radio frequency discharge in the

lamp results in emission of extremely narrow bond resonance spectral lines of the element.

There are large number of various chemical elements which can be used in these lamps, for

instance Cs,Rb, K,Na,Ag, Hg, Sn, Be, Sr, and others. These monochromatic sources can

be used for detection of many small amounts of elements and find wide application in the

atomic absorption spectroscopy.

However, the most widely used monochromatic sources of radiation are lasers which

revolutionary transformed the whole world. The basic principle of laser operation is stim-

ulated emission from the sample with the population inversion. Independent from

the construction in detail, lasers contain the following important components: an active

medium with an upper and a lower working energy levels, a pumping source,

and a resonator.

The population inversion between the upper and the lower working levels is necessary for

obtaining the amplification of the stimulated emission in the sample. As shown in eq.(13) the

Einstein coefficient of spontaneous emission, Amn is proportional to the third order of the

radiation frequency, ν3. Therefore, in the visible and even in the UV spectral range intensity

of spontaneous emission is much larger than the intensity of the stimulated emission. For

instance, for the radiation wavelength of 500 nm (green light) and at a temperature of 300

K, the ratio between the intensities of the spontaneous and stimulated transitions becomes

F = e96 = 5 · 1041. Therefore, among the 5 · 1041 transitions, only one is due to induced

emission. In contrast, for the radiation frequency ν = 1 GHz (microwave spectral range)

and the same temperature the ratio is F = 1, 6 · 10−4. Therefore, nearly all transitions are
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induced. Thus, it is not astonishing that the first laser generated microwaves. It was called

the maser.

The first laser system developed by Maiman in 1960 was a ruby laser based on the three

level scheme. Nowadays, the four level laser scheme is used for almost all lasers systems

because it provides more effective way for producing the population inversion.

1. Properties of the Laser Radiation

The main features of the laser radiation reflect the features of stimulated emitted photons.

(i) The laser light can be very monochromatic. In principle, the laser linewidth depends on

the active medium and on the laser design. The best results have been obtained for the

low pressure gas lasers (Hansch was able to reach a ratio ∆λ/λ ' 10−15). Therefore,

lasers can be effectively used for high resolution spectroscopy.

(ii) The laser beam can be of very low divergent (spatial coherence), which means that its

diameter is increased only slowly in space. In principle, with laser beams it is possible

to reach the diffraction limit:

Θ ≈ 2λ

πd
(28)

This means that using a lens, it is possible to focus a laser beam on a spot of the

diameter:

d ≈ 2λ

π

f

D
(29)

where, f denotes the focal distance of the lens.

As, for the best lenses, the ratio of focal lens to diameter is about 0.8, it is a rule of

thumb that the half of the light wavelength is approximately equal to the lower limit

of the diameter of the spot.

(iii) Short laser pulses can be produced. Using specific techniques for generating the laser

pulses (Q-switching, modes locking, pulse compression), the extremely short pulse

duration can be achieved. As short as several hundreds of atoseconds (10−18) pulse

duration has recently been obtained! The pulse duration in the nanosecond (10−9),

picosecond (10−12), and femtosecond (10−15) range are now available commercially.
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Particularly, femtosecond laser pulses are of great importance, because they allow to

investigate chemical reactions in the real-time domain.

(iv) High power output. The continuous CO2 lasers are now can produce the high power

output up to 100 kW. These technological lasers are now widely used in industry

and for military aims. The pulsed lasers, especially those operating in the pico- and

femtosecond time-domain can have extremely high pick power. Particularly, the pick

powers from 109 to 1012 watts are now available. High power pulsed lasers are widely

used for investigation of multiple photon processes.

2. Practical Lasers
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IV. ROTATIONAL SPECTRA

In classical mechanics, the energy of an particle which rotates around an axis is given by

E = 1
2
Iω2. Here ω is the angular velocity in radian per second and I = mr2 is the moment

of inertia, where m is the particle mass and r is the distances between the particle and the

axis. For an arbitrary object the rotation energy can be written in the following form:

E =
1

2
IAω2

A +
1

2
IBω2

B +
1

2
ICω2

C , (30)

where A,B, C are so-called principal axes of rotation.

Using Ji = Iiωi, with i = A,B, C, where Ji is angular momentum, we get

E =
1

2

J2
A

IA

+
1

2

J2
B

IB

+
1

2

J2
C

IC

(31)

To begin with, we assume that the shape of the molecule does not depend on rotation, i.e.

that the the bond lengths are not affected by centrifugal forces. This molecule is called rigid

rotor in contrast to an elastic rotor. We will consider the following cases, see Table III:

TABLE I:

Spherical top IA = IB = IC = I e.g. CH4, CCl4, SF6

IA = IB = I⊥ and IC = I‖ e.g.

Symmetric top I⊥ < I‖ oblate benzene

I⊥ > I‖ prolate CH3I

Linear Rotor IA = 0, IB = IC all diatomic molecules and

(a special case of symmetric top) e.g., CO2, N2O, C2H2

Asymmetric top IA 6= IB 6= IC e.g.

H2O

A. Spherical Top

Examples: CH4, CCl4, SF6.

For this case (I = IA = IB = IC) the rotational energy is given by:

E =
J2

A + J2
B + J2

C

2I
=

J2

2I
(32)
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We corresponding quantum mechanical expression for the rotational energy is given by:

EJ =
h̄2

2I
· J(J + 1), (33)

because the eigenvalues of the operator J2 are J2Ψ = h̄2J(J + 1)Ψ.

Usually in spectroscopy eq. (33) is presented in the form

EJ = hcB · J(J + 1), (34)

where the rotational constant B measured in cm−1. The product hcB in eq.(34) is equal to

h̄2/2I. The rotational constant B is as

B =
h̄

4πcI
(35)

B. Symmetric Top

Examples: CH3I, C6H6, NH3.

Denoting I‖ as the moment of inertia which is parallel and I⊥ as the moment of inertia

which is perpendicular to the molecular axis, we can consider two cases: I‖ < I⊥ and I‖ > I⊥.

In the first case we have an oblate top and the second case a prolate top (which is like

a cigar). Within the world of atoms and molecules, benzene is an example for the first,

while methyliodide an example for the second. For both types, the rotational energy can be

presented as sum of two terms:

E =
J2

A + J2
B

2J⊥
+

J2
C

2I‖
(36)

Transition to quantum mechanics is eased by the fact that the energy values respective

J2 and one selected axis obtained simultaneously. For J2, which is

J2 = J2
A + J2

B + J2
C (37)

the energy values are defined by

E =
J2

2I⊥
+ J2

C ·
(

1

2I‖
− 1

2I⊥

)
(38)

We now replace the square of the angular momentum by the eigenvalues of the quantum

mechanical angular momentum operator J2− > J(J + 1)h̄2 and use the quantum number
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K as projection of the momentum J onto the molecules axis (i.e. JCΨ = Kh̄Ψ). For the

quantum mechanical energy levels, we finally obtain:

EJK = B · J(J + 1) + (A−B)K2, with J = 0, 1, 2, . . . K = 0,±1, . . . ,±J, (39)

where the rotational constants A and B are

A =
h̄2

4πcI‖
B =

h̄2

4πcI⊥
(40)

Obviously, the sign of K does not affect the energy as it dependents on the square of K.

Therefore, all levels are doubly degenerated. There are 2J + 1 projections of the angular

momentum onto the external axis (MJ = 0,±1,±2,±3, ... ± J) and therefore, each energy

level of the symmetric top is 2(2J + 1)-fold degenerated. For K = 0 we have (2J + 1)-fold

degeneracy. Though there is no definition for clockwise/anti-clockwise and +/?, the sign

indicates two possibilities of rotation with the same energy.

We now consider two extreme cases of a rotating symmetric top:|K| ' J and K = 0.

For the first case |K| ' J , when J has maximum projection onto the molecular axis, the

rotation is mainly proceeds around this axis and the rotational constant A is decisive for

the energy levels.

EJ,K=J = B · J + AJ2 ≈ A · J2 (41)

For the other case K = 0 the molecule rotates perpendicular to its axis. Therefore, the

projection of the angular momentum on the axis is zero and the rotational energy becomes

EJ,K=0 = B · J(J + 1) (42)

C. Linear Top

All diatomic molecules and all linear molecules: HCCH, NCCN , CO2.

Due to the small mass of electron, linear molecules show almost zero moment of inertia

with respect to the molecular axis. Therefore, the considerations here are confined to a

rotation around the two axes perpendicular to this axis (K = 0). For the rotational energy

we obtain the important relation:

EJ = B · J(J + 1) (43)
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This is the same equation as for spherical top. Nevertheless we should have in mind that

for linear top the energy levels are (2J + 1)-fold degenerated according to the number of

projections of J onto the external axis. In contrast, for a spherical top, there is no difference

between rotational constants A and B and the quantum number K accepts one of the (2J+1)

arbitrary values that correspond to an orientation of the angular momentum to the molecular

axis. Together with an (2J + 1) degeneracy respective to a fixed external orientation of the

angular momentum, we find for an energy level of a spherical top a (2J +1)2-fold degeneracy.

For all known masses of a molecule and fixed distances between them, we are able to

calculate its moment of inertia and even extend this theoretical approach to energy levels.

Some useful formulas that deal with the types of molecules discussed so far can be found

here and in Peter Atkins’ text book.

D. Asymmetric Top

Examples: H2O, OClO, NO2.

The diagram below shows the eigenvalues of energy for the oblate and prolate case of an

asymmetric top. In the prolate case, the energies decrease with increasing K, whereas in

the oblate case, energies increase with increasing K. For values of IB in between IA and IC ,

the diagram provides the energy of the asymmetric top. We here describe the asymmetric

top by using a pair of projection quantum numbers Ka and Kc of the symmetric limiting

cases. The rotational state is completely defined by the three quantum numbers J Ka Kc.

E. Elastic Rotator

So far, we assumed that rotation does not affect the shape of a molecule (rigid rotor).

However, in general there are centrifugal forces that stretch the bonds of a rotating molecule.

We will confine our treatment of this problem with the case of linear rotor.

An increased length of the bond corresponds to a higher moment of inertia (I = r2).

In turn, the rotational constant B decreases (B ∼ I−1), i.e. we would expect a rotational

energy with a minor slope than in the case of Erot = BrigidJ(J + 1).

In this case we have no exact solution of the Schrodinger equation, however, we are can
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attack the problem using a series expansion and write an expected rotational energy as:

EJ = B · J(J + 1)−D · J2(J + 1)2 + · · · (44)

Here we assume that the coefficient D is a small correction, in other words, D is much

smaller than B.

From the treatment above we should expect that the weaker the bond, the more pro-

nounced the deviation from the rigid rotor becomes. A weak bond corresponds to a low

vibrational energy: Evib = h̄ω(v + 1/2); ω = (k/µ)1/2, where k is a force constant of the

bond. The value of D can be either calculated, or derived from spectral data.

F. Selection Rules for Pure Rotational Spectra

The rules are applied to the rotational spectra of polar molecules when the transitional

dipole moment of the molecule is in resonance with an external electromagnetic field. Polar

molecules have a permanent dipole moment and a transitional dipole moment within a pure

rotational spectrum is not equal to zero.

In contrast, no rotational spectra exists for homonuclear diatomics; the same is true for

spherical tops. Nevertheless, certain states of a such molecules allow unexpected interac-

tions with the electromagnetic field; i.e. some vibrations, that introduce a time-dependent

dipole moment high rotational speeds that cause some distortion of an originally spherical

symmetry. A (weak) dipole moment emerges. The conservation of the angular momentum

is fundamental for the selection rules that allow or prohibit transitions of a linear molecule:

∆J = ±1 ∆MJ = 0,±1 (45)

For a symmetric top, an existing dipole moment is always parallel to the molecular axis.

Thus, with respect to this axis, no changes of the rotational state occur:

∆K = 0 (46)

For energy difference corresponding to the transitions J + 1 < −J can be presented as:

ν(J) = B · (J + 1)(J + 2)−B · J(J + 1) = 2B(J + 1) with J = 1, 2, . . . , (47)

where the energy is measured in wave numbers, cm−1.

17



It is easy to see that the frequency difference between two neighbor absorption lines is

constant: ∆ν = ν(J) − ν(J − 1) = 2B. Therefore, the constant B as well as the bond’s

length r can be directly determined from the absorption spectrum.

A more accurate expression for ν is

ν(J) = B · (J + 1)(J + 2)−D · (J + 1)2(J + 2)2 −B · J(J + 1) + D · J2(J + 1)2

= 2B · (J + 1)− 4D · (J + 1)3 (48)

That is the frequency difference between two neighbor absorption lines is

∆ν = ν(J)− ν(J − 1) = 2B − 4D(3J2 + 9J + 7) (49)

and decreases with J.

Thus, the centrifugal constant D for diatomic molecules is in connection with the

wavenumber νS that corresponds with the molecule’s vibration.

D =
4B3

ν2
S

(50)

Reversely, D provides information on νs. Of course, the intensity of an absorption is

dependent on the transitional dipole moment and on the population of the initial and the

final state.

V. ROTATIONAL AND VIBRATIONAL-ROTATIONAL SPECTRA
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VI. ELECTRONIC TRANSITIONS

In the Born-Oppenheimer approximation the energy of a molecule can be presented as

sum of electronic energy Eel, vibrational energy Evib and rotational energy Erot energy.

E = Eel + Evib + Erot (51)

As a first approximation, we describe the energy E = h̄ω of a diatomic molecule as a sum

of electronic, vibrational and rotational energies

ω = Te + ωe

(
v +

1

2

)
+ BeJ(J + 1), (52)

where Te is the minimum of the potential curve. Each of the three terms in eq. (52) may

be different for the lower and higher energy states and may be changes during an optical

transition. The total transition frequency can be written as

∆ω = T ′
e − T ′′

e + ω′e

(
v′ +

1

2

)
− ω′′e

(
v′′ +

1

2

)
+ B′

eJ
′(J ′ + 1)−B′′

e J ′′(J ′′ + 1)

= ωel + ωvib + ωrot, (53)

where the lower energy state is denoted by a double prime (”), while the higher energy state

is denoted by prime (’).

Note, that the energy difference corresponding to the excitation of electrons ∆Eel =

h̄ωel in this approximation is much larger that the energy difference corresponding to the

molecular vibration ∆Evib = h̄ωvib which is large that the energy difference corresponding

to the molecular rotations ∆Erot = h̄ωrot:

ωel À ωvib À ωrot (54)

A. Selection Rules for Electronic Transitions in Diatomic Molecules

The selection rules for optical transitions between different electronic states of a diatomic

molecule are shown in Table II.

If we consider the rotational states as well, it is required that the total angular momentum

of photon and molecule remains constant. In general, the selection rules for the total angular

momentum J are as follows: ∆J = 0,±1 however, for Σ ↔ Σ transitions the ∆J = 0

transition is forbidden. These rules are summarized in table III below.
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TABLE II: Selection Rules for Electronic Transitions in Diatomic Molecules

Allowed Transitions Examples

∆Λ = 0,±1 Σ ↔ Σ, Π ↔ Π, Σ ↔ Π, ∆ ↔ Π

∆S = 0 1Σ ↔ 1Σ, 3Π ↔ 3Π, 1Σ ↔ 1Π, 3Σ ↔ 3Π

+ ↔ + Σ+ ↔ Σ+

− ↔ − Σ− ↔ Σ−

g ↔ u Σ+
g ↔ Σ+

u , Σg ↔ Πu

TABLE III: Selection Rules for rotational quantum number J in Electronic Transitions

Electron Transition Allowed transitions Name

Σ ↔ Σ ∆J = −1 P branch

∆J = 1 R branch

∆J = −1 P branch

all others ∆J = 1 R branch

∆J = 0 Q branch

B. Rotational Structure of Electronic Transitions

In general, rotational transitions accompany the excitation of the vibrational structure

levels that accompany electronic excitation. We should expect P , Q, and R branches for

each vibrational transition (but for Σ → Σ transitions, see section VIA) and therefore,

electronic transitions have very reach structure. Let us consider the rotational structure for

a given vibrational transition v′ ← v′′, where v′′ belongs to the molecular ground state and

v′ belongs to the molecular excited state. Denoting

ν̃0 = E ′
el − E ′′

el + ω′e

(
v′ +

1

2

)
− ω′′e

(
v′′ +

1

2

)
, (55)

where ν̃0 is measured in the wave numbers, cm−1, we can write the expressions for the P ,

Q, and R branches as

P branch (∆J = −1) : νP = ν̃0 + (B̃e
′ − B̃e

′′
)J2 − (B̃e

′
+ B̃e

′′
)J ; J = 1, 2, . . .
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Q branch (∆J = 0) : νQ = ν̃0 + (B̃e
′ − B̃e

′′
)J(J + 1); J = 0, 1, 2, . . . (56)

R branch (∆J = 1) : νR = ν̃0 + (B̃e
′ − B̃e

′′
)(J + 1)2 + (B̃e

′
+ B̃e

′′
)(J + 1); J = 0, 1, 2, . . .

Normally, the rotation constant B̃e is smaller for the excited state that for the ground

state, B̃e
′ − B̃e

′′
< 0. This is because the electron excitation usually increases the bond

length. Note, that B̃e = 1/(8π2cIe) and Ie = µR2
0, where the sign tilde ( ˜ ) reminds that

B̃e is measured in the wave numbers. In this case one can see from eq. (56) that the lines

of the R branch converge with increasing J , that is the line frequency increases at small J

values till (B̃e
′′ − B̃e

′
)(J + 1) = (B̃e

′
+ B̃e

′′
) and then decreases at larger J values. That is,

the branch R has a band head at (B̃e
′′ − B̃e

′
)(J + 1) = (B̃e

′
+ B̃e

′′
) and is said to be red

shadowed.

In more rare case when the electron excitation decreases the bond length B̃e
′ − B̃e

′′
> 0.

Then, the lines of the P branch begin to converge and go through a head at (B̃e
′− B̃e

′′
)J =

(B̃e
′
+ B̃e

′′
). This means that the line frequency decreases at low J values before the band

head and increases at higher J values. In this case the branch ia said to be blue shadowed.

C. Franck-Condon Principle

Using the Franck-Condon principle, we are able to calculate the intensities of transitions

between vibrational states of the electronic energy levels. Due to their low mass, electron

movement is fast compare with the nuclear movement and we can consider these two move-

ments separately. Particularly, the position of nucleus can be considered as fixed during

the electron transition. This means that the electron transition can be drawn as a vertical

line on the potential curve diagram. However, after the electron transition took place, the

nuclear vibrations move the nucleus toward the position of a new equilibrium distance with

respect to the new potential energy curve.

In terms of quantum mechanics, the probability of an electron transition is proportional

to the squire of the overlap integral between the vibrational wavefunction Ψv′′(R) and Ψv′(R

before and after the electronic transition.

To treat the problem quantitatively, the complete molecular wavefunction of the initial

and the final state are needed. Fortunately, it is often possible to present this wavefunction

as a product of the electronic wave function Ψel with depends on the coordinates of all
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electrons ri and the vibrational wavefunction Ψv(R) which is a solution of the Schrödinger

equation for nuclei and depend on the internuclear distance R. This approach is based on the

Born-Oppenheimer approximation which argues with large difference in mass for nuclei and

electrons. In the Born-Oppenheimer approximation the probability of a radiative transition

is written as (see eq. (3)):

Wk←0 ∝ |〈k|µZ |0〉|2 E2
z , (57)

where 〈k|µZ |0〉 is the matrix element of the transition dipole moment:

〈k|µZ |0〉 = qv′′v′

∫
Ψelk

∗(ri)µzΨel0(ri)dri (58)

qv′′v′ =
∫

Ψ∗
v′′(R)Ψv′(R)dR (59)

The integral over the electron coordinates ri does not dependent on the vibration of

nuclei and it is identical for all pairs of v’, v”. The integral over R represents overlap of the

vibrational wave functions.

The quantities |qv′′v′|2 are called Franck-Condon factors. No selection rules exist for

changes of the vibrational quantum number v. This is because the vibrational wave functions

of the initial and final states are in general not orthogonal to each other being the subject

of Scrödinger equation with two different potentials V ′(R) and V ′′(R). Apart from that, the

Franck-Condon-principle allows to calculate the probability of a transition from some

vibrational level v′ of the initial state to another vibrational level v′′ of the final state.

D. Dissociation and Predissociation

If excitation transfers a molecule in a state containing more energy than the separated

components (atoms, or molecules), dissociation takes place. Above the dissociation limit

the energy is not quantized and energy continuum appears instead of discrete energy levels.

The dissociative state is not stable, which means that the molecule disassembled into the

separated components very quickly (approximately during the time of one vibration).

In some spectra the discrete energy level structure disappears already for energies which

are below the dissociation limit but reappears again at some higher energies. This phe-

nomenon is called predissociation.
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Predissociation can be usually explained as a result of internal conversion from an ex-

cited state A into a dissociative state B. We assume relationship between the vibrational

states closely above the level of intersection and the translational motion during dissocia-

tion. These circumstances allow a separation of a molecule via state B without supplying

the energy of dissociation for state A. Note that, in the range beyond the blurred caused

by predissociation, discrete lines are found. An interpretation would be that for higher

vibrational states, a conversion towards state B is excluded again.

Sometimes, predissociation is a result of some additional external factors. For example,

we can imagine a molecule to be pushed from state A to state B due to collision with another

atom, or molecule. Alternatively, an external electric, or magnetic field can cause to the

predissociation of an initially stable molecule. In such cases, we speak of collision- or field-

induced predissociation.
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