
Molecular Symmetry

1



I. WHAT IS SYMMETRY AND WHY IT IS IMPORTANT?

Some object are ”more symmetrical” than others. A sphere is more symmetrical than

a cube because it looks the same after rotation through any angle about the diameter. A

cube looks the same only if it is rotated through certain angels about specific axes, such as

90o, 180o, or 270o about an axis passing through the centers of any of its opposite faces, or

by 120o or 240o about an axis passing through any of the opposite corners.

Here are also examples of different molecules which remain the same after certain symme-

try operations: NH3, H2O, C6H6, CBrClF . In general, an action which leaves the object

looking the same after a transformation is called a symmetry operation. Typical symme-

try operations include rotations, reflections, and inversions. There is a corresponding

symmetry element for each symmetry operation, which is the point, line, or plane with

respect to which the symmetry operation is performed. For instance, a rotation is carried

out around an axis, a reflection is carried out in a plane, while an inversion is carried our in

a point.

We shall see that we can classify molecules that possess the same set of symmetry ele-

ments, and grouping together molecules that possess the same set of symmetry elements.

This classification is very important, because it allows to make some general conclusions

about molecular properties without calculation. Particularly, we will be able to decide if a

molecule has a dipole moment, or not and to know in advance the degeneracy of molecular

states. We also will be able to identify overlap, or dipole moment integrals which necessary

vanish and obtain selection rules for transitions in polyatomic molecules.

II. SYMMETRY OPERATIONS

The classification of objects according to symmetry elements corresponding to operations

that leave at least one common point unchanged gives rise to the point groups. These

are five kinds of symmetry operations and five kinds of symmetry elements of this

kind. These symmetry operations are as follows.

• The identity, E, consists of doing nothing: the corresponding symmetry element is an

entire object. In general, any object undergo this symmetry operation. The example

of the molecule which has only the identity symmetry operation is C3H6O3, DNA,
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and CHClBrF .

• The n-fold rotation about an n-fold axis of symmetry, Cn is a rotation through

the angle 360o/n. Particularly, the operation C1 is a rotation through 360o which is

equivalent to the identity E. H2O molecule has one twofold axis, C2. NH3 molecule

has one threefold axis, C3 which is associated with two symmetry operations: 120o

rotation C3 and 240o (or −120o) rotation C2
3 . C6H6 molecule has one sixfold axis C6

and six twofold axes C2. If a molecule possess several rotational axes, then the one of

them with the greatest value of n is called the principal axis. All linear molecules

including all diatomics has C∞ axis because rotation on any angle remains the molecule

the same.

• The reflection in a mirror plane, σ may contain the principal axis of a molecule,

or be perpendicular to it. If the plane contains the principal axis, it is called vertical

and denoted σv. For instance, H2O molecule has two vertical planes of symmetry and

NH3 molecule has tree. A vertical mirror plane which bisects the angle between two

C2 axes is called a dihedral plane and is denoted by σd. If the plane of symmetry

is perpendicular to the principal axis, it is called horizontal and denoted σh. For

instance, C6H6 molecule has a C6 principal axis and a horizontal mirror plane.

• The inversion through the center of symmetry is the operation which transforms

all coordinates of the object according to the rule: (x, y, z) → (−x,−y,−z). For

instance, a sphere, or a cube has a center of inversion, but H2O, and NH3 have not.

C6H6 molecule has a center of inversion.

• The n-fold improper rotation about an n-fold axis of symmetry, Sn is a com-

bination of two successive transformations. The first transformation is a rotation

through 360o/n and the second transformation is a reflection through a plane perpen-

dicular to the axis of the rotation. Note, that neither operation alone needs to be a

symmetry operation. For instance, CH4 molecule has three S4 axes.
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III. THE SYMMETRY CLASSIFICATION OF MOLECULES

In order to classify molecules according to symmetry one can list their symmetry elements

and collect together the molecules with the same list of elements. More precisely, we can

collect together the molecules which belong to the same group.

A. Definition of the Group

According to the group theory, the symmetry operations are the members of a group

if they satisfy the following group axioms:

1. The successive application of two operations is equivalent to the application of a mem-

ber of the group. In other words, if the operations A and B belong to the same group

then A · B = C, where C is also the operation from the same group. Note, that in

general A ·B 6= B · A.

2. One of the operations in the group is the identity operation E. This means that

A · E = E · A = A.

3. The reciprocal of each operation is a member of the group: if A belongs to a group, then

A−1 = B, where B is also the member of the group. Note, that A ·A−1 = A−1 ·A = E.

4. Multiplication of the operations is associative: A ·B · C = (A ·B) · C = A · (B · C).

B. Point Groups

Particularly we will consider the following point groups which molecules can belong to.

1. The groups C1, Ci, and Cs. A molecule belongs to the group C1 if it has no elements

other than identity E. Example: DNA. A molecule belongs to the group Ci, if it

consist of two operations: the identity E and the inversion i. Example: meso-tartaric

acid. A molecule belongs to the group Cs, if it consists of two elements: identity E

and a mirror plane σ. Example: OHD.

2. The group Cn. A molecule belongs to the group Cn if it has a n-fold axis. Example:

H2O2 molecule belongs to the C2 group as it has the elements E and C2.
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3. The group Cnv. A molecule belongs to the group Cnv if in addition to the identity E

and a Cn axis, it has n vertical mirror planes σv. Examples: H2O molecule belongs to

the C2v group as it has the symmetry elements E, C2, and two vertical mirror planes

which are called σv and σ′v. The NH3 molecule belongs to the C3v group as it has the

symmetry elements E, C3, and three σv planes. All heteroatomic diatomic molecules

and OCS belong to the group C∞v because all rotations around the internuclear axis

and all reflections across the axis are symmetry operations.

4. The group Cnh. A molecule belongs to the group Cnh if in addition to the identity E

and a Cn axis, it has a horizontal mirror plane σh. Example: butadiene C4H6, which

belongs to the C2h group, while B(OH)3 molecule belongs to the C3h group. Note, that

presence of C2 and σh operations imply the presence of a center of inversion. Thus,

the group C2h consists of a C2 axis, a horizontal mirror plane σh, and the inversion i.

5. The group Dn. A molecule belongs to the group Dn if it has a n-fold principal axis Cn

and n two-fold axes perpendicular to Cn. D1 is of cause equivalent with C2 and the

molecules of this symmetry group are usually classified as C2.

6. The group Dnd. A molecule belongs to the group Dnh if in addition to the Dn opera-

tions it possess n dihedral mirror planes σd. Example: The twisted, 90o allene belongs

to D2d group while the staggered confirmation of ethane belongs to D3d group.

7. The group Dnh. A molecule belongs to the group Dnh if in addition to the Dn opera-

tions it possess a horizontal mirror plane σh. As a consequence, in the presence of these

symmetry elements the molecule has also necessarily n vertical planes of symmetry σv

at angles 360o/2n to one another. Examples: BF3 has the elements E, C3, 3C2, and

σh and thus belongs to the D3h group. C6H6 has the elements E, C6, 3C2, 3C ′
2 and σh

and thus belongs to the D6h group. All homonuclear diatomic molecules, such as O2,

N2, and others belong to the D∞h group. Another examples are ethene C2H4 (D2h),

CO2 (D∞h), C2H2 (D∞h).

8. The group Sn. A molecule belongs to the group Sn if it possess one Sn axis. Example:

tetraphenylmethane which belongs to the group S4. Note, that the group S2 is the

same as Ci, so such molecules have been classified before as Ci.
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9. The cubic groups. There are many important molecules with more than one principal

axes, for instance, CH4 and SF6. Most of them belong to the cubic groups, particularly

to tetrahedral groups T , Td, and Th, or to the octahedral groups O and Oh. If

the object has the rotational symmetry of the tetrahedron, or octahedron, but has no

their planes of reflection, then it belongs to the simpler groups T , or O. The group Th

is based on T , but also has a center of inversion.

10. The full rotational group R3. This group consists of infinite number of rotational

axes with all possible values of n. It is the symmetry of a sphere. All atoms belong to

this symmetry group.

C. Group Multiplication Table

Let us consider the symmetry group of NH3 molecule. These are:

• a 3-fold axis, associated with two symmetry operations: C+
3 (+120o rotation) and C−

3

(-120o rotation).

• 3 σv vertical planes, σv, σ′v, and σ′′v associated with tree mirror reflections.

Now we add to these five symmetry operations the identity operator E and show that all

six symmetry operations joint a group. Particularly, it is easy to see that C+
3 C−

3 = E, where

the identity operation E can be considered as a ”product” of the two rotation operators

operations C+
3 and C−

3 . It can also be seen that σvaC
+
3 = σvb and C+

3 σva = σvc. Following

this procedure we can build the ”multiplication table” presented below.

According to the Table I, the ”product” of each two symmetry transformations from

six E, C+
3 , C−

3 , σv, σ′v, and σ′′v is equivalent to one of these transformations. It is clearly

seen that the third and the fourth conditions of the group are also valid. Thus, these six

operators build a group. This group is known as C3v group. The total number of operations

in a group is called the group order. Therefore, the order of C3v is 6.

Let us consider the symmetry group of H2O molecule. The symmetry elements are:

• a 2-fold axis, associated with the symmetry operation: C2 .

• two σv vertical planes, σv, and σ′v associated with two mirror reflections.
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TABLE I: Multiplication Table for the C3v Group

E C+
3 C−

3 σv σ′v σ′′v

E E C+
3 C−

3 σv σ′v σ′′v

C+
3 C+

3 C−
3 E σ′v σ′′v σv

C−
3 C−

3 E C+
3 σ′′v σv σ′v

σv σv σ′′v σ′v E C−
3 C+

3

σ′v σ′v σv σ′′v C+
3 E C−

3

σ′′v σ′′v σ′v σv C−
3 C+

3 E

Now we add to these four symmetry operations the identity operator E and show that

all six symmetry operations joint a group. The ”multiplication table” presented below.

TABLE II: Multiplication Table for the C2v Group

E C2 σv σ′v

E E C2 σv σ′v

C2 C2 E σ′v σv

σv σv σ′v E C2

σ′v σ′v σv C2 E

According to the Table II, the ”product” of each two symmetry transformations from six

E, C2, σv, and σ′v is equivalent to one of these transformations. It is clearly seen that the

third and the fourth conditions of the group are also valid. Thus, these four operators build

a group. This group is known as C2v group. The group order of C2v is 4.

Each point group is characterized by each own multiplication table.

D. Some Consequences of Molecular Symmetry

As soon point the group of a molecule is identified, some statements about its properties

can be done.
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1. Polarity

As we have already discussed a polar molecule is one having a permanent electric dipole

moment. For instance these are NaCl, O3, NH3, and many others. It is known that the

rotational absorption transitions can occur only in polar molecules. The group theory give

important instructions, how the molecular symmetry is related to the molecular polarity.

For instance, if a molecule belongs to the group Cn, where n > 1, then it cannot have

a component of the dipole moment perpendicular to the symmetry axis, because a dipole

moment which exist in one direction perpendicular to the axis is cancelled by an opposing

dipole. A dipole moment in these molecules can be only parallel to the molecular axis.

The same is valid for any of the Cnv group molecule. The molecules which belongs to all

other groups, but Cs, cannot have a permanent dipole moment, because they always have

symmetry operations transforming one end of the molecule into another. Thus, only the

molecules which belong to the Cn, Cnv, or Cs group can have a permanent dipole

moment.

2. Chirality

A chiral molecule is that cannot be transformed to itself with any mirror transforma-

tion. An achiral molecule can be transformed to itself with a mirror transformation.

Chiral molecules are important because they are optically active in the sense that they

can rotate the plane of polarized light passing through the molecular sample. A molecule

may be chiral only if it does not have an axis of improper rotation Sn. Note, that

the molecule with a center of inversion i belongs to S2 group and thus cannot be chiral.

Similarly, because S1 = σ, any molecule with a mirror plane is achiral.
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IV. SYMMETRY OF MOLECULAR VIBRATIONS

Vibrational movement in polyatomic molecules is much more complicated than that of

the diatomics. That is because much greater number of possible degrees of freedom of a

polyatomic molecule. For instance, if there are N nuclei we need 3N coordinates to describe

their motion. However, if we want to study the vibrational motion of a molecule, we are

not interested in the translational motion of the system as a whole, which can be described

completely by tree coordinates of the molecular center of mass, Xc, Yc, Zc. Therefore,

3N−3 coordinates are sufficient for fixing the relative positions of all N nuclei with respect

to the molecular center of mass.

The motion relative the center of mass includes the rotation of the molecule. The rota-

tion alone can also be described by 3 coordinates, which are usually the two polar angles

which fix a certain direction in the molecule and the angle of rotation about that direction.

Thus, 3N − 6 coordinates are left for describing the relative motion of the nuclei with fixed

orientation of the system as a whole, in other words, we have 3N − 6 vibrational degrees

of freedom. However, for linear molecules two coordinates, for instance, the two angles

of the internuclear axis, are sufficient for describing the rotation and therefore for linear

molecules we have 3N − 5 vibrational degrees of freedom.

When the molecule is in its equilibrium configuration, the coordinates of nucleus i in the

molecular x, y, z coordinate frame are written xe
i , y

e
i , z

e
i and, at a displacement configuration,

the Cartesian vibrational displacement coordinates are given by:

∆xi = (xi − xe
i ) ∆yi = (yi − ye

i ) ∆zi = (zi − ze
i ) (1)

A. The Vibrational Hamiltonian

The classical expression for the vibrational energy, using molecular-fixed x, y, z coordi-

nates (u1, u2, ...u3N) = (∆xi, ∆yi, ...∆zN) is

Evib =
1

2

3N∑
i=1

miu̇
2
i + VN(ui), (2)

where VN(ui) is the potential energy which is zero at the equilibrium together with its first

derivative. The Taylor’s series expansion about the equilibrium is

VN =
1

2

3N∑
i,j=1

kijuiuj +
1

6

3N∑
i,j,k=1

ki,j,kuiujuk +
1

24

3N∑
i,j,k,l=1

ki,j,k,luiujukul + · · · , (3)
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where kij, ki,j,k and ki,j,k,l are force constants.

The lowest order terms in the expansion are quadratic and for small displacement only

these terms can be preserved in eq. (3), while all other terms can be neglected. Corresponding

expression for the potential V 0
N is called the harmonic-oscillator approximation. In the

harmonic-oscillator approximation the vibrational energy can be written as

E0
vib =

1

2

3N∑
i=1

miu̇
2
i +

1

2

3N∑
i,j=1

ki,juiuj, (4)

where ki,j are harmonic force constants.

B. Normal Vibrational Modes

A standard result from classical mechanics is that the vibrational energy of a N -body

harmonic oscillator (4) can be written in terms of 3N−6 mass-weighted linear combinations

of the uj which are called vibrational normal coordinates Qr:

E0
vib =

1

2

3N−6∑
r=1

[Q̇2
r + λrQ

2
r], (5)

where

m
1/2
i ui =

3N∑
r=1

lui,rQr. (6)

The quantum mechanical Hamiltonian of a vibrating polyatomic molecule can be obtained

from eq.(5) by replacing the classical variables Qr and Q̇r by their quantum mechanical

analogues. Great advantage of the vibrational energy expression in eq.(5) is that there

is no cross terms in the potential energy. Therefore, the solution (wavefunction) of the

corresponding Schrödinger equation is greatly simplified as can be presented as a product

of the normal mode wavefunctions which are known solution of the harmonic oscillator

problem:

Φvib = Φv1(Q1)Φv2(Q2) . . . Φv3N−6(Q3N−6). (7)

The corresponding vibrational energy Evib is a sum of the each normal mode energy

Evib = Ev1 + Ev2 + · · ·+ Ev3N−6, (8)

where Evk = ωek(vk + 1/2).
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Each of the 3N − 6 (3N − 5) vibrational normal coordinate Qr describes a collective

normal mode of vibration.

In general, any vibrational of the molecular system may be represented as a

superposition of normal vibrations with suitable amplitudes. Within each of the

normal mode k all nuclei move with the same frequency νk according to simple harmonic

motion. Two, or more normal modes are degenerate if they all have the same frequency.

As an example, consider vibration of a mass suspended by an elastic bar of rectangular

cross section. If mass is displaced slightly from its equilibrium position in the x direction

and then left, it will carry our simple harmonic in this direction with a frequency

νx =
1

2π

√
kx

m
, (9)

where kx is a force constant in the x direction.

If mass is displaced slightly from its equilibrium position in the y direction and then left,

it will carry our simple harmonic in this direction with a frequency

νy =
1

2π

√
ky

m
, (10)

where ky is a force constant in the y direction.

If mass is displaced in a direction different from x and y, it will not carry out a simple

harmonic oscillation, but more complicated type of motion, so named Lissajous motion.

This is because the restoring force F whose components are Fx = −kxx and Fy = −kyy is

not directed toward the origin since kx 6= ky. However, this motion can be always presented

as linear superposition of two simple harmonic motions of different frequency:

x = x0 cos 2πνxt, y = y0 cos 2πνyt, (11)

where x0, y0 are coordinates of initial position of the mass (point A).

C. Symmetry of Normal Vibrations

We will now consider the effect of symmetry operations on the normal vibrations. Math-

ematically there are two equivalent ways of carrying out a symmetry operation. We may

either keep the coordinate frame fixed and transform the molecule (for instance, reflecting,

or rotating the positions of nuclei), or we can keep the positions of nuclei and refer them to
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the transformed coordinate frame (reflected, or rotated). Following G.Herzberg, we chouse

here the former way.

1. Effect of Symmetry Operations on Non-Degenerate Vibrations

For a given non-degenerate normal vibration νr, there is only one possible way of displace-

ment coordinates of the atoms. As the symmetry operation acts simultaneously on all atom

displacements, it can only either simultaneously change signs of all displacement coordinates

ui, or remain them unchanged. Thus, a non-degenerate vibration can only be symmet-

ric, or antisymmetric with respect to any symmetry operation which is permitted by the

symmetry of the molecule. The former means that Q′
r = Qr and the latter means that

Q′
r = −Qr, where the primed coordinates are the ones after the symmetry operation.

For example, for the formaldehyde molecule, H2CO the reflection over the plane xz

perpendicular to the molecular plane leaves the normal modes ν1, ν2, ν3, and ν6 the same,

whereas inverts directions of all displacement vectors for the modes ν4 and ν5. In a similar

way it can be seen that all vibrations but ν6 are symmetric with respect to the molecular

plane, while ν6 is antisymmetric. Finally, the vibrations ν4, ν5, and ν6 are antisymmetric

with respect to the rotation by π about the two-fold XY axis.

2. Effect of Symmetry Operations on Degenerate Vibrations

Let us consider the normal vibrations of a linear triatomic molecule, like CO2. The two

vibrations ν2a and ν2b are obviously degenerate with each other. They are antisymmetric

with respect to an inversion at a center of symmetry as is the vibration ν3. Another

possible symmetry operation is rotation Cϕ
∞ by an arbitrary angle ϕ about the internuclear

axis. This rotation leaves the vibrations ν1 and ν3 unchanged, however, both ν2a and ν2b are

changes by more than just a sign. In other words, the vibrations ν2a and ν2b are neither

symmetric, nor antisymmetric with respect to the rotation Cϕ
∞. The displacement

normal coordinates after the rotation Q′
2a, Q′

2b can be expressed over the normal coordinates

before the rotation Q2a, Q2b as

Q′
2a = Q2a cos ϕ + Q2b sin ϕ (12)

Q′
2b = −Q2a sin ϕ + Q2b cos ϕ (13)
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Therefore, degenerate vibrations, in general, transformed under a symmetry oper-

ation as a linear combination of each other. This result is valid for any number of the

degenerate vibrations and any type of symmetry operations involved.

V. SYMMETRY OF VIBRATION AND ELECTRONIC WAVEFUNCTIONS

Since a vibrational eigenfunction is a function of the normal coordinates, its behavior

with respect to symmetry operations depends on the symmetry behavior of the normal

coordinates.

A. Molecules with Non-Degenerate Vibrations

The total vibrational wavefunction of a molecule can be always written as a product of

the normal mode wavefunctions which are known solution of the harmonic oscillator

problem, see eq. (7). The i-th harmonic oscillator wavefunction can be presented as

Φvi(Qi) = Nvie
−αi

2
Q2

i Hvi(
√

αiQi), (14)

where Hvi(
√

αiQi) is the Hermit polynomial of the vi-th degree and αi = ωi/h.

If a non-degenerate vibration Qi is symmetric with respect to a symmetry operation A

(that is Â ·Qi = Qi), the wavefunction Φvi(Qi) in eq. (14) is also symmetric for all values

of the quantum number vi (that is, Â ·Φvi(Qi) = Φvi(Qi)). If a non-degenerate vibration Qi

is antisymmetric with respect to this symmetry (that is Â ·Qi = −Qi), the wavefunction

Φvi(Qi) behaves as Â ·Φvi(Qi) = Φvi(−Qi) = (−1)viΦvi(Qi). Therefore, for antisymmetric

vibration mode Qi the wavefunction Φvi(Qi) can be either symmetric, or antisymmetric

depending of the value of the quantum number vi.

In case if all normal vibrations are non-degenerate, the total vibrational eigenfunction Φ

in eq. (7) will be symmetric with respect to a given symmetry operation when the number

of component antisymmetric wave functions Φvi(Qi) is even. The total eigenfunction

Φ will be antisymmetric when the number of component antisymmetric wave functions

Φvi(Qi) is odd.

Important result: Total vibrational eigenfunctions, corresponding to a non-degenerate

vibration must be either symmetric, or antisymmetric with respect to the symmetry oper-

ations of the group. The symmetric, or antisymmetric behavior of the total wavefunction
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can be relatively easy obtained considering its explicit form which is a product of the eigen-

functions of harmonic oscillators corresponding to different normal vibration modes.

B. Molecules with Degenerate Vibrations

If a molecule has a doubly degenerate vibrations they have the same frequencies ω1 =

ω2 = ωi and the formula for the term values can be written as

G(v1, v2) = ω1(v1 +
1

2
) + ω2(v2 +

1

2
) = ωi(vi + 1), (15)

where vi = v1 + v2 can be treated as a new vibrational quantum number.

The corresponding total vibrational eigenfunction can be written as (see eq. (14))

Φi = Nvie
−αi

2
(Q2

1+Q2
2)Hv1(

√
αiQ1)Hv2(

√
αiQ2), (16)

where αi = ωi/h.

If v1 = v2 = vi = 0, than H0(
√

αiQ) = constant and there is only one function Φi in

eq. (16). Thus, the zero-point vibrational vi = 0 does not introduce a degeneracy.

In this case, the same relations apply as in the previous section.

If the degenerate vibration if excited by only one quantum, we have either v1 = 1, v2 = 0,

or v1 = 0, v2 = 1 for which the wavefunctions Φi in eq. (16) are not the same. That is, there

are two eigenfunctions for the state vi = v1 + v2 = 1 with the energy Gvi = 2ωi, see eq. (15).

Therefore, the state vi is doubly degenerate. Note, that any linear combination of the two

wavefunctions in eq. (16) is also an eigenfunction of the same energy level.

If two quanta are excited (vi = 2), we may have either v1 = 2, v2 = 0, or v1 = 1, v2 = 1,

or v1 = 0, v2 = 2, that is there is a triple degeneracy. In general, the degree of degeneracy if

vi quanta of the double degenerate vibration are excited, is equal to vi + 1.

Important result: Total vibrational eigenfunctions, corresponding to a degenerate vi-

bration are neither symmetric, nor antisymmetric, but can in general be transformed under

a symmetry operation as a linear combination of each other. However, there is only one

zero-point v = v1 = v2 = 0 vibration wavefunction Φ0 which must be either symmetric, or

antisymmetric under a symmetry operation.
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VI. CHARACTER TABLES

According to the Scrödinger equation

ĤvibΦk = EkΦk, (17)

each eigenfunction Φ is associated with a certain energy level Ek.

Therefore, molecular eigenfunctions and energy levels can be labelled with a

symmetry index k which indicates the point symmetry group of the molecule.

The quantitative characteristic of the labelling is a character table which shows

the behavior of the molecular wavefunctions under the symmetry operations of the molecular

symmetry point group. Since only certain combinations of symmetry elements occur in the

various point groups and since some of their symmetry elements are consequence of others,

only certain combinations of symmetry properties of the vibrational (and elec-

tronic) wavefunctions are possible. Following Mulliken, in the molecular spectroscopy

these combinations of symmetry properties are called symmetry types, or species. In the

formal group theory the same combinations are called irreducible representations of

the group.

As an example we first consider the character table of the Cs symmetry group which

is shown in Table III

TABLE III: Character Table for the Cs Group

Cs E σ(xy) h = 2

A′ +1 +1 x, y

A′′ +1 −1 z

Here the first line shows the symmetry operations of the group, E and σ(xy), where

(xy) indicates the reflection mirror plain. The first column indicates the irreducible repre-

sentations of the group A′ and A′′, while +1 and −1 is used for indication the symmetric
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and antisymmetric behavior of the wavefunctions with respect to the corresponding sym-

metry operation. Note, that in every normal vibration and eigenfunction there are species

(irreducible representations) which are symmetric under all symmetry operations per-

mitted within a group. These species are called totally symmetric and usually indicated

by A, or A1, or A′. Particularly for the Cs group the totally symmetric species is indicated

by A′ and presented in the second line in Table III. It is seen, that the group Cs has two

species, A′ and A′′.

The last column in the table indicate the group order, h = 2 and the simple functions of

the coordinates x, y, z which belongs to a certain irreducible representation. These functions

are very important, because they represent the symmetry of px, py, and px atomic orbitals

which as we know are used for building the molecular orbitals. Therefore, these coordinates

provide a simple way of understanding which species a normal mode, or wavefunction belongs

to.

For instance, consider the plane, but non-linear molecule of hydrazoic acid, N3H which

belongs to the Cs group. It has, according to Table III normal vibrations which are sym-

metric, or antisymmetric with respect to the molecular plane. During the former, all atoms

remain in the plane, during the latter, they move in lines perpendicular to the plane.

As another example consider the character table of the C2v symmetry group which is

shown in Table IV

TABLE IV: Character Table for the C2v Group

C2v E C2 σv σ′v h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 −1 −1 xy

B1 +1 −1 +1 −1 x xz

B2 +1 −1 −1 +1 y yz
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As seen from Table IV, the C2v group has four species (irreducible representations). The

totally symmetric species is called in this case A1. Each of the other A2, B1 and B2 species are

used to denote one-dimensional (non-degenerate) representations. A is used if the character

under the principal rotation is +1, while B is used if the character is −1. If other higher

dimensional representations are permitted, letter E denotes a two-dimensional irreducible

representation and T denotes a three-dimensional representation. The symmetry species

A1, A2, B1, and B2 summarize the symmetry properties of the vibrational, or electronic

molecular wavefunctions of a for polyatomic molecule. They are analogue to the symmetry

labels Σ, Π, ∆ which are used for diatomic molecules.

As an example we consider normal vibrations of the formaldehyde molecule H2CO which

belongs to the group C2v. It is seen that the three normal vibrations ν1, ν2, and ν3 are totally

symmetric and thus belong to species A1. The vibrations ν4 and ν5 belong to species B1 (if

we call the plane of the molecule the xz plane), and ν6 belongs to species B2. There is no

normal vibration of species A2 in this case. However, in more complicated molecules

belonging to the same group there also can be normal vibrations belonging to species A2.

Let us now consider the symmetry of electronic orbitals. As we know, lowercase Greek

letters σ, π, etc are used for denoting the symmetries of orbitals in diatomic molecules.

Similarly, the lowercase Latin letters a1, a2, b1, and b2 are used for denote the symmetry

of orbitals in polyatomic molecules which belong to the A1, A2, B1, and B2 irreducible

representations, respectively. Alternatively, one says that the wavefunctions a1, a2, b1, and

b2 span the irreducible representations A1, A2, B1, and B2. The functions in the 5-th and

6-th columns in Table IV represent the symmetry of different p and d atomic orbitals which

span a certain irreducible representation.

For instance, the symmetry of electronic wavefunctions in the H2O molecule are as follows.

The atomic orbitals of the O atom are: O2px, O2py, and O2pz. Assuming that the molecular

plane is Y Z we can see that the orbital O2px change sign under a 1800 rotation, C2 and

under the reflection σ′v, but remains the same under the reflection σv. Therefore, this orbital

belongs to the B1 irreducible representation. As we shall see, any molecular orbital built

from this atomic orbital will be a b1 orbital. It can also be seen in the similar way that O2py

orbital changes sign under C2, but remain the same after σ′v, thus it belongs to B2 and can

contribute to b2 molecular orbital. Similarly, it can be shown that O2pz belongs to the A1

irreducible representation.
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Finally, consider the character table of the C3v symmetry group which is shown in

Table V

TABLE V: Character Table for the C3v Group

C3v E 2C3 3σv h = 6

A1 +1 +1 +1 z z2, x2 + y2

A2 +1 +1 −1

E +2 −1 0 (x, y) (xz, x2 − y2), (xz, yz)

There are several new features of the Character Table V compared with the Character

Tables III and IV.

First of all, the number of symmetry operations h = 6 is now not equal to the number of

possible irreducible representations (3). That is because, some of the symmetry operations

in Table V can be combined into classes, which means that they are of the same type (for

example, rotations) and can be transferred into one another by a symmetry operation of

the same group. For instance, the 3-fold rotations C+
3 and C−

3 belong to the same class

because the can be transformed to each other by reflection in the bisecting plane. Therefore,

these two rotations are put to the same cell in Table V. Also three vertical planes of mirror

reflection σv, σ′v, and σ′′v belong to the same class because they can be transformed to each

other by 3-fold rotation. All these mirror planes are put to another cell in Table V.

There is an important theorem of group theory states that:

Number of symmetry species is equal to the number of classes.

There are three classes of symmetry operations in C3v group shown in the first

line in Table V and, therefore, there are three symmetry species which are shown in the

first column. It is seen that all elements of each symmetry class have the same symmetry

characters.
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Secondly, the symmetry species E in Table V is a double degenerate one. These

species cannot be characterized simply by +1, or −1, as for non-degenerate case. As we

know, the wavefunctions which belong to a degenerate vibration are neither symmetric,

nor antisymmetric with respect to the symmetry operation of the group, but in general

can be transformed as a linear combination of each other as

Φ′
v1 = d11Φv1 + d12Φv2 + d13Φv3 + · · · ,

Φ′
v2 = d21Φv1 + d22Φv2 + d23Φv3 + · · · , (18)

Φ′
v3 = d31Φv1 + d32Φv2 + d33Φv3 + · · · ,

· · · = · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

where the primed wavefunctions in the lhs are ones after the symmetry operation while the

non-primed wavefunctions in the rhs are the initial ones. In case of a double-degenerate

state the number of the wavefunctions and the number of equations in eq. (18) is of cause

equal to two.

It can be shown, that for characterization of the behavior of the degenerate eigenfunctions

under symmetry operations it is sufficient to label every symmetry operation with the value

χ = d11 + d22 + d33 + · · · (19)

which is the sum of the diagonal expansion coefficients in the set of equations in eq. (18).

The values χ in eq. (19) (as well as λ = ±1 symmetric indices for non-degenerate species)

are called characters of the irreducible representation. These characters are given in

the third line in Table V. As you can see the characters of the degenerate eigenfunctions

are not limited by the values ±1, but can take other integer numbers including zero.

Note, that the character of identity operator E is always equal to the degeneracy

of the state. Therefore, for a C3v molecule any orbitals with a symmetry label a1 and

a2 is non-degenerate, while a doubly degenerate pair of orbitals belong to e representation.

Because there is not characters greater than 2 in Table V we can assume that no triply

degenerate orbitals can occur in any C3v molecule.

So far, we dealt with the symmetry classification of individual atomic orbitals. It is

important to note that the same technique may be applied to the linear combinations

of atomic orbitals which are used for building the molecular orbitals. This allows to
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classify the molecular energy states and molecular orbitals with respect to the

symmetry transformations of the molecule.

As an example, we consider the linear combinations of electronic wavefunctions which

belong to different representations in Table V.

Particularly, for NH3 case the combination

s1 = sa + sb + sc, (20)

where sa, sb, and sc are s-orbitals of three hydrogen atoms, belongs to the species a1.

The combinations

s2 = −sa +
1

2
(sb + sc) (21)

s3 = sb − sc

belongs to the doubly degenerate species e.

For proving this statement let us consider the transformation of the combinations in

eq. (21) under C+
3 and σv symmetry operations of the group

Rotation C+
3 :

s′2 = −sb +
1

2
(sc + sa) (22)

s′3 = sc − sa

This can be easily proved from eqs. (21) and (22) that

s′2 = −1

2
s2 −

3

4
s3 (23)

s′3 = s2 −
1

2
s3

Reflection σv: (over the plane containing N −Ha bond)

s′2 = −sa +
1

2
(sb + sc) = s2 (24)

s′3 = sc − sb = −s3

Similar expressions can be obtained for the symmetry operations C−
3 , σ′v, and σ′′v . It is

seen that the wavefunctions s2 and s3 are transformed as a linear combination of each other

and thus span the species E.
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A. Vanishing Integrals

The character tables provide a quick and convenient way of judging whether an overlap,

or transition integral is necessary zero.

Let us consider the overlap integral

I =
∫

f1f2 dτ, (25)

where f1 and f2 are two atomic, or molecular orbitals.

The integral I is always a scalar value which means that it does not changes under any

symmetry transformations of the molecule. The volume element dτ is also a scalar as it

is invariant under any coordinate transformations. Therefore, the product f1f2 must also

remain unchanged by any symmetry operations of the molecular point group.

If the integrand changes its sign under a symmetry operation, the integral I is necessary

zero, because its positive part will necessary cancel its positive part. As we know, the the

irreducible representation which is equivalent in the molecular point group is totally

symmetric representation A1. Thus, the integral I differs from zero only if the integrand

f1f2 spans the symmetry species A1.

If the symmetry species of the functions f1 and f2 are known, the group theory provides a

formal procedure which can be used for determination of the symmetry species of the product

f1f2. Particularly, the character table of the product f1f2 can be obtained just

by multiplication of the characters from the character tables of the functions f1

and f2 corresponding to a certain symmetry operator.

As an example we consider the product of the f1 = sN orbital of the N atom and the

linear combination of three hydrogen atom orbitals, f2 = s1 in eq. (20) in NH3 molecule,

each of the orbitals spans A1 species:

f1 : 1 1 1

f2 : 1 1 1 (26)

f1f2 : 1 1 1

It is evident from eq. (26) and the table V , that the product f1f1 also spans A1 and there-

fore, the in integral I in eq. (25) in this case is not necessary equal to zero. Therefore,

bonding and antibonding molecular orbitals can be formed from linear combinations

of sN and s1.
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The procedure of finding the irreducible representation of the product of two represen-

tations Γ1 and Γ2 is written as direct product of irreducible representations Γ1 × Γ2

and and for the example above can be written as A1 × A1 = A1.

As another example, we consider the product of the f1 = sN orbital of the N atom in

NH3 and f2 = s3, where s3 = sB − sC is the linear combination of the hydrogen atom

wavefunctions from eq. (21). Now one function spans the A1 species and another the E

species. The product table of characters is

f1 : 1 1 1

f2 : 2 − 1 0 (27)

f1f2 : 2 − 1 0

The product characters 2, −1, 0 are those of the E species alone and therefore, the integral

must be zero. Therefore, bonding and antibonding molecular orbitals cannot be formed

from linear combinations of sN and s3. The direct product of the representations in

this case is written as A1× E = E.

The general rule is that only orbitals of the same symmetry species may have

nonzero overlap and therefore, form bonding and antibonding combinations. This

result makes a direct link between the group theory and construction of molecular orbitals

from atomic orbitals by the LCAO procedure we discussed in previous chapter. Indeed, the

molecular orbitals can be formed only from a particular set of atomic orbitals with nonzero

overlap. These molecular orbitals are usually labelled with a lower-case letter corresponding

to the symmetry species. For instance, the (sN , s1) molecular orbitals are called a1 if they

are bonding and a∗1 if they are antibonding.

Note, that the relationship between the symmetry species of the atomic orbitals and their

product, in general, is not as simple as in eqs. (26) and (27). As an example, let us consider

the linear combinations s2 and s3 in eq. (21) which both have symmetry species E. As we

know the N(2s) atomic orbital cannot be used together with each of them for building the

bonding and antibonding molecular orbitals. However, the N2px and N2py atomic orbitals

also belong to the E species in C3v (see Character Table V) and thus are suitable because

they may have a nonzero overlap with s2 and s3. This construction can be verified by

multiplying the characters as
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f1 : 2 − 1 0

f2 : 2 − 1 0 (28)

f1f2 : 4 1 0

It can be easily verified from eq. (28) by making summation of characters in Table V

that E × E = A1 + A2 + E. The product f1f2 in eq. (28) contains the totally symmetric

species A1 and, therefore, the corresponding integral may have a nonzero value.

B. Vanishing Dipole Moment Integrals and Selection Rules

The integrals of the form

I =
∫

f1f2f3 dτ (29)

are very important in quantum mechanics as they include transition matrix elements.

For dipole transitions in molecules under influence of electromagnetic radiation, f1 and

f3 are the molecular wavefunctions of the initial and the final quantum states and f2 is a

component of the molecular dipole moment, µx, µy, or µz. In case of electronic transi-

tions, the components of the dipole moment are just the coordinates of the optical electron,

x, y, and z.

The conditions when the transition matrix elements (29) are necessary zero lead to

the transition selection rules. As shown in the previous section, the integral (29) can be

nonzero only if the product f1f2f3 spans totally symmetric representation A1, or its

equivalent. In order to test whether this condition is fulfilled, the characters of all three

functions should be multiplied together and the resulting characters should be analyzed.

As an example, let us investigate whether an electron in an a1 orbital in H2O can make

an electric dipole transition to a b1 orbital. Having in mind that H2O molecule belong

to the C2v group, we should examine all three x, y, and z components of the transition

dipole moment. Reference to the C2v character table in Table IV shows that these three

components transform as B1, B2, and A1, respectively. The calculation runs as shown in

Table VI.
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TABLE VI: Optical Transition in Water

x-component y-component z-component

E C2 σv σ′v E C2 σv σ′v E C2 σv σ′v

f1(B1) 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

f2 1 −1 1 −1 1 −1 −1 1 1 1 1 1

f3(A1) 1 1 1 1 1 1 1 1 1 1 1 1

f1f2f3 1 1 1 1 1 1 −1 −1 1 −1 1 −1

It is seen that the product with f2 = x spans A1, the product with f2 = y spans A2,

and the product with f2 = z spans B1. Thus, only the x-component of the transition dipole

moment may be nonzero. Therefore, we conclude that the electric dipole transition between

a1 and b1 is allowed and that x-polarization of the radiation can be absorbed, or emitted

in this transition. Note that the electric vector of this radiation is perpendicular to the

molecular plane.

Continuing this analysis we can build similar table for any of the a1, a2, b1, and b2 orbitals

of the C2v symmetry molecule and for all x, y, and z directions of the transition dipole

moment. The result is that the B1 ↔ B2 and A1 ↔ A2 transitions are forbidden, while the

transition between all other states are allowed for certain component of the dipole moment

each. Particularly, the transitions between the states of the same symmetry A1 ↔ A1,

B1 ↔ B1, ets. are possible for z component of the dipole moment which is parallel to the

C2 axis, while the transitions between different symmetry states are possible either for x, or

y components of the dipole moment. Other selection rules can be obtained using a similar

procedure for all other molecular symmetry groups.

The obtained selection rules for a C2v molecule are analogues of the Σ ↔ Σ, Π ↔ Π,

(∆M = 0) and Σ ↔ Π (∆M = ±1) selection rules for the electronic transitions in diatomic

molecules we studied before.
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