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Einstein CoefficientsEinstein Coefficients

dN
2/dt = – A21 N2

dN
2/dt = – B21

. u(ν) . N2
dN

2/dt = B12
. u(ν) . N1

B21 / B12 = g2 / g1 A21 / B12 = 8πh ν ³/c³B21 / B12  = g2 / g1



LambertLambert--Beer LawBeer Law

Transmittance of the sample::

T = I / I0                     T = e-σNl = e-α,

where σ [cm2] is an absorption cross section,   N[cm-3], and l [cm]

The form which widely used in laboratory practice:

T = 10-εCl, 

where ε [L mol-1 cm-1]  is an extinction coefficient and C [mol L-1] is a molar concentration:
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NA is Avogadro number, NA = 6.022 1023 mol-1



Low Optical Density Low Optical Density 

In case if the exponent factor α = σ N l  is small compared to unity, αÜ 1, the 
exponential function can be expanded over α.  Keeping in this expansion only 
first two terms one comes to the important for practice particular case called
low optical density of the sample:

I = I0(1 - σ N l)

Integrating the cross section σ = σ(ν) over the light frequency ν within the
absorption peak, one obtains the integrated cross section <σ(ν)>:
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where Bmn is the Einstein absorption coefficient and ν0 is the center of the 
molecular absorption line. Thus, the Einstein coefficient Bmn can be directly
determined from experiment.



Born-Oppenheimer Approximation
Ψtot = Ψel Ψvib Ψrot

Etot = Eel + Evib + Erot

Potential energy curves



Morse Potential
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Born-Oppenheimer Approximation: 
Electronic transitions in molecules 



Molecular Fluorescence Spectroscopy



Jablonski Diagram



Spectral Line Shape Spectral Line Shape 
Uncertainty relation for energy:
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Two main processes which are responsible to the finite lifetime of excited states:

1. Spontaneous decay which is proportional to the corresponding Einstein coefficient Anm.  
The intensity the spontaneous decay is proportional to the square of the matrix
element of interaction with electromagnetic modes of vacuum.   

2. Interaction between the molecular quantum states and other particles and fields. In the 
gas phase this interaction is mostly inelastic collisions with surrounding particles. In the 
condensed matter there can be interaction with phonons (vibration of the surrounding lattice).

The corresponding line has the Lorentz shape: 
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Homogeneous (Lorentz) Broadening Homogeneous (Lorentz) Broadening 

ConditionCondition ∆∆ννL L (Hz)(Hz) ∆∆ννL L (cm(cm--11))

Natural lifetimesNatural lifetimes Gas phase, Gas phase, 
electronic transitionselectronic transitions

∼∼ 101077 ∼∼ 1010--44

Natural lifetimesNatural lifetimes Gas phase, Gas phase, 
rotational transitionsrotational transitions

∼∼1010--44 ∼∼ 1010--1515

CollisionalCollisional lifetimeslifetimes Gas, atmospheric Gas, atmospheric 
pressurepressure

∼∼ 101099 ∼∼ 1010--22

CollisionalCollisional lifetimeslifetimes Liquid, electronic Liquid, electronic 
transitions  transitions  

∼∼ 10101212 ∼∼ 101011



Doppler BroadeningDoppler Broadening
The Doppler effect results in light frequency shift when the source is moving toward, 
or away from the observer. When a source emitting radiation with frequency ν0
moves with a speed v, the observer detects radiation with frequency:
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Molecules in a gas chaotically move in all directions. In case of the thermal equilibrium, 
the distribution of molecular velocities along the line of detection, which we designate as 
Z axis. this velocity distribution is known as Maxwell-Boltzmann distribution:
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The observer detects the corresponding Doppler-broadened spectral line profile:
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For transitions which belong to the visible or the near-UV spectral range when the gas
temperature is around 300 K, the Doppler width is typically within one GHz. For the 
visible part of the spectrum the Doppler line broadening is usually much larger 
than the lifetime broadening.



Lorentz and Doppler Line Shapes



Synchrotron Radiation



LASER 
Light Amplification by Stimulated Emission

Nobel Prize, 1964
C.H. Townes, 
N.G. Basov, 

and A.M. Prokhorov



Properties of Laser Radiation
1. The laser light can be very monochromatic and can be effectively used for high 

resolution spectroscopy. The best results have been obtained for the low pressure 
gas lasers: ∆λ/λ ≈ 10-15.

2.   The laser beam can be of very low divergent (spatial coherence), which means that
its diameter is increased only slowly in space. In principle, with laser beams it is 
possible to reach the diffraction limit:

θ ≈ 2λ / πd
Using a lens, it is possible to focus a laser beam on a spot of the diameter:  

d ≈ 2λf / π D ≈ λ/ 2
where, f denotes the focal distance of the lens.

3. Extremely short laser pulses can be produced. The pulse duration in the nanosecond
(10-9), picosecond 10-12,  and femtosecond 10-15 range are now available 
commercially. Particularly, femtosecond laser pulses are of great importance, 
because they allow to investigate chemical reactions in the real-time domain.

4.   High power output. The continuous CO2 lasers are now can produce the high power
output up to 100 kW. These technological lasers are now widely used in industry and 
for military. The pulsed lasers, especially those operating in the pico- and 
femtosecond time-domain can have the pick power from 109 to 1012 Watt. High 
power pulsed lasers are widely used for investigation of nonlinear and multiple 
photon processes.



Rotational Spectra: Moment of Inertia

Energy of Rotation:  Erot = ½ I ω, where I is the moment of inertia: I = m r2.

For arbitrary object rotation energy is written as:  

C

C

B

B

A

A
CCBBAArot I

J
I

J
I

JIIIE
2222

1
2
1

2
1 222

222 ++=++= ωωω

where A, B, and C are principale axes of rotation and

Ji = Ii ωI is angular momentum H2O



Rigid Rotator: examples
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SpericalSperical TopTop IIA A = I= IB B = I= IC C = I= I CHCH44, CCl, CCl44, CF, CF66

Symmetric TopSymmetric Top IIA A = = IIAA = I= I⊥⊥,   I,   ICC = I= I║║
II⊥⊥< I< I║║ oblateoblate

II⊥⊥> I> I║║ prolateprolate

CC66HH66, CH, CH33I, NHI, NH33

Linear RotorLinear Rotor IIAA= 0,   I= 0,   IBB = I= ICC All diatomic molecules,All diatomic molecules,
COCO22, N, N22O, CO, C22HH22

Asymmetric TopAsymmetric Top IIA A ≠≠ IIB B ≠≠ IICC

IIC C ≥≥ IIB B ≥≥ IIAA

HH22O, NOO, NO22, H, H22CO, CO, 
CHCH33OHOH



Moments of Inertia

Diatomics, CO2, N2O, C2H2

CH4, CCl4,  SF6

NH3, CH3I, C6H6

H2O, NO2, H2CO, CH3OH



Sperical Top: Energy States
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The corresponding quantum mechanical expression:
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In spectroscopy the rotational energy is usually written as:
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The rotational term:



Symmetric Top 
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using J2 → J ( J+1) ħ2   and  JC → K ħ

We get the corresponding quantum mechanical expression for the rotational term:

2)()1( KBAJJBFJK −++= Oblate top: A - B < 0

Prolate top: A - B > 0 where   J = 0, 1, 2 … and K = 0, ±1, ±2, ± J.
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Symmetric Top: F( J ) = B J ( J +1) + (A – B)K 2

Role of the quantum number K: 

if K = J » 1,   F( J )  ≈ A K 2

if K = 0,         F( J ) = B J ( J + 1 )

Role of the quantum number MJ



Asymmetric Top



Elastic Rotator: Centrifugal Distortion
So far, we assumed that rotation does not affect the shape of a molecule 
(rigid rotor). However, in general there are centrifugal forces that stretch the 
bonds of a rotating molecule.

An increased length of the bond corresponds to a higher moment of inertia 
(I = µ r2). In turn, the rotational constant B decreases (B ∼ I-1), i.e. we would 
expect a rotational energy in the form:

F( J ) ≈ B J ( J + 1) – D J2 ( J + 1)2 + …

where the coefficient D is a small correction, which is called 
centrifugal distortion constant.



Pure Rotational Transitions

The pure rotational transitions are possible in polar molecules which have 
a permanent dipole moment and a transitional dipole moment within a 
pure rotational spectrum is not equal to zero.

In contrast, no rotational spectra exists for homonuclear diatomics; the 
same is true for spherical tops.

Selection rules: ∆ J = ± 1;  ∆ MJ = 0, ±1

For a symmetric top, an existing dipole moment is always parallel to the 
molecular axis:

∆ K = 0



Pure Rotational Spectrum

ν( J ) = B( J + 1)(J + 2) – B J (J + 1) 

= 2B (J + 1)

∆ ν = ν(J + 1) - ν(J ) = 2B

That is, the spectrum consists of 
equidestant lines.

The intensities of spectral lines first increase 
with increasing J and pass through a maximum. 
The reason for the maximum in intensity is the 
existence of a maximum in the population of 
rotational levels. According to the Boltzmann
distribution the population of a rotational level 
at temperature T is given by:

N( J ) = N0 gJ exp( - EJ / kT )



Vibrational Levels
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Vibrational Transitions
If the molecule in its equilibrium position has a dipole moment, as is always the case for 
the heteroatomic molecules, this dipole moment will in general change if the internuclear
distance changed. The molecular vibration would lead to the emission of light at the 
oscillation frequency. Therefore, all heteroatomic molecules in principle are said to be 
infrared active, that is they can absorb or emit infrared radiation. Contrary, all 
homoatomic diatomic molecules do not have any dipole moment and cannot set in 
vibration by absorption the infrared light. These molecules are said to be
infrared inactive. The selection rules for the vibrational transitions in a 
harmonic oscillator-like molecule are:

∆v = v’ – v” = ± 1

As the energy difference between each two neighbor vibrational energy levels is ħω,
the vibrational spectrum would contain only one line. This line is called fundamental line. 
The wavelength of this line for different diatomic molecules usually lies in near IR
spectral range  λ = 2 … 20 mkm .

However, for high lying vibrational energy states the harmonic oscillator approximation in 
is not valid any more. For anharmonic oscillator the selection rule above is not valid and 
additional lines appear in the molecular vibration spectra corresponding to transitions
∆v = v’ – v” = ± 1, ± 2, ± 3 and so on. These transitions are called second harmonic, 
third harmonic, and so on. The intensity of the harmonic transitions transitions is usually 
much smaller than the intensity of the fundamental line.



Vibrational-Rotational Transitions

The quantum mechanical analysis of simultaneous vibrational and rotational transitions 
shows that the rotational quantum number  J changes by ± 1 during the vibrational
transition. If the molecule also possesses angular momentum about its axis, (for instance, 
NO(2Π)), then the selection rule also allows ∆ J = 0. In general, the vibrational-rotational 
spectrum of the v' → v" ± 1 transition can contains three rotational branches: ∆ J = – 1, 
∆ J = 0,  and ∆ J = 1 branches which are called P, Q, and R branches, respectively. 



Vibrational-Rotational Transitions: Π Electronic State



Electronic Transitions



Electronic Transitions

In the Born-Oppenheimeer Approximation:  

Wavefunction:

),()(),()),(,( φθφθ rotvibeele RR ΨΨΨ≈Ψ rRr

Energy: E = Eel + Evib + Erot

Term [ cm-1 ]: F = Te + ωe (v + ½) + Be J (J+1)

where Te » ωe » Be

∆F = Te' – Te"  + ωe' (v' + ½) – ωe" (v" + ½) + Be' J '( J '+ 1) – Be" J" ( J" + 1) 



Electronic Transitions: Franck-Condon factors
Transition dipole moment:

elqelvibvibrotrotrotvibelqrotvibelq ddd Ψ ′′Ψ′Ψ ′′Ψ′Ψ ′′Ψ′≈Ψ ′′Ψ ′′Ψ ′′Ψ′Ψ′Ψ′≈Ψ ′′Ψ′

Where

vibvib Ψ ′′Ψ′

is a Frank-Condon Factor

and 

elqel d Ψ ′′Ψ′

is an electronic transition dipole moment



Electronic Transitions: selection rules

Diatomic Molecule Electronic Terms:
2S+1ΛΩ

Additional quantum numbers: 
g , u for homonuclear molecules
± for Σ states

Allowed Allowed 
TransitionsTransitions

ExamplesExamples

∆Λ∆Λ = 0, = 0, ±±11 ΣΣ→→ ΣΣ, , ΠΠ →→ ΠΠ, , 
ΣΣ→→ ΠΠ,  ,  ∆∆ →→ ΠΠ

∆∆S = 0S = 0 11ΣΣ↔↔ 11ΣΣ,  ,  22ΣΣ↔↔ 22ΠΠ, , 
33ΠΠ ↔↔ 33ΠΠ, , 11ΣΣ↔↔ 11ΠΠ

+ + ↔↔ ++
–– ↔↔ ––

ΣΣ++ ↔↔ ΣΣ++

ΣΣ–– ↔↔ ΣΣ––

g g ↔↔ uu ΣΣgg
+ + ↔↔ ΣΣuu

++

ΣΣuu ↔↔ ΠΠgg

Examples: 11ΣΣ00
++ ,  ,  33ΣΣ1u1u

++ , , 11ΠΠ11 ,  ,  11ΠΠ1g1g

Σ+Λ=Ω=Σ=Λ ∑∑
i

i
i

i σλ



Rotational Structure of Electronic Transitions:
Selection Rules

Electron Electron 
TransitionTransition

Allowed Allowed 
TransitionsTransitions

NameName

ΣΣ↔↔ ΣΣ ∆∆J = J = –– 11
∆∆J = + J = + 11

P branchP branch
R branchR branch

All othersAll others ∆∆J = J = –– 11
∆∆J = J = 00
∆∆J = + J = + 11

P branchP branch
Q branchQ branch
R branchR branch



Rotational Structure of Electronic Transitions

Red shadowed Blue shadowed 



Dissociation and Predissociation



Photoelectron Spectroscopy: CO Molecule



Absorption Spectroscopy with a Frequency 
Modulated Laser 



Intracavity Absorption Technique



Cavity Ring-Down Spectroscopy



Photoacoustic Spectroscopy



Photoacoustic Spectroscopy: C2H2



Laser Induced Fluorescence (LIF)



Laser Induced Fluorescence: Na2



Laser Induced Fluorescence: NaK



Laser Induced Fluorescence: NO2



Ionization Spectroscopy



REMPI 2+1



Rydberg States Ionization 



Raman Laser Spectroscopy



Rotational Raman Spectroscopy



Rotational Raman Spectroscopy: C2N2



Vibrational Raman Spectroscopy: CO



Ultra Short Laser Pulses: mode locking

Time scale 

2p=50 2p+1=5



Quantum Beat Spectroscopy



Femto-Second Laser Spectroscopy

1999 Nobel Prize
Ahmed Zewail

Pump-and-probe Technique 



Femto-Second Laser Spectroscopy

H2O

Pump-and-probe technique



Spectroscopy of size-selected molecular clusters: (On)-

Ahmed Zewail Lab



Spectroscopy of size-selected molecular clusters


	Einstein Coefficients

