

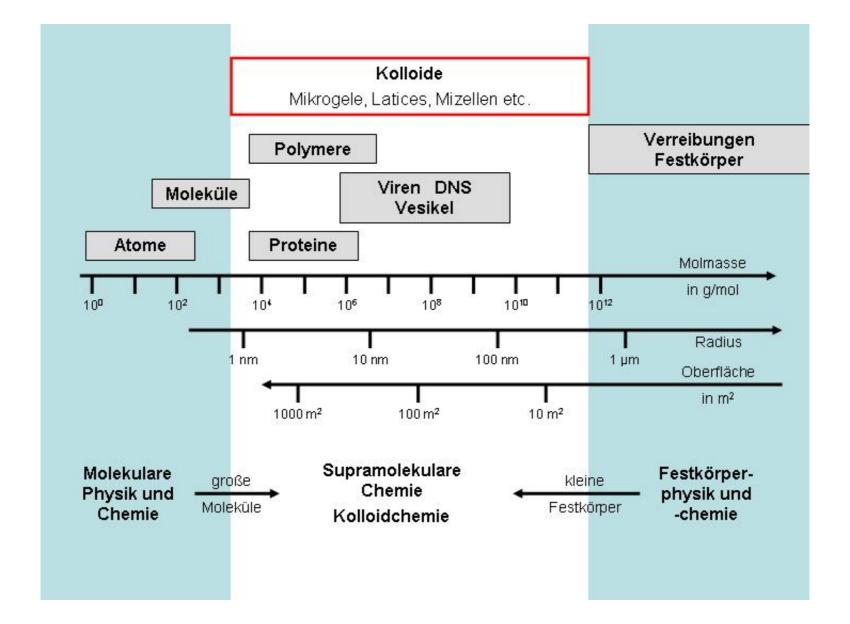
Grenzflächen- und Kolloidchemie

Dr. Rudolf Tuckermann
Physikalisch-Technische Bundesanstalt
(PTB)

Fachbereich 6.12 (Umweltradioaktivität)
Bundesallee 100
D-38108 Braunschweig

Tel.: 0531-592-6107

rudolf.tuckermann@ptb.de



Grenzflächen- und Kolloidchemie

Die Grenzflächen- und Kolloidchemie ist ein Spezialgebiet der Physikalischen Chemie, das in vielfältigem Kontakt mit anderen Disziplinen der Chemie und Physik steht. Sie beschäftigt sich mit den Teilcheneigenschaften in kolloiden Dimensionen (typische Teilchengröße 1-500 nm) sowie mit dem Aufbau und den Eigenschaften verschiedener Grenzflächen, denen die Aggregatzustände der die Grenzfläche bildenden Phasen zugrunde liegt. Erscheinungen, Eigenschaften und Prozesse an Kolloiden und Grenzflächen werden mit klassischen und modernen Methoden der Physik und Chemie untersucht und beschrieben.

Kolloide Systeme

Einteilung kolloider Systeme

Dispersions- kolloide	Molekülkolloide	Mizellen- bzw. Assoziationskolloide
- + + - + + + + +		
 hydrophobe Kolloide thermodynamisch instabil polydispers und polyform 	 hydrophile Kolloide thermodynamisch stabil Makromoleküle / Polymere (~10⁹ Atome) geknäult, polydispers 	 hydrophile Systeme thermodynamisch stabil Assoziate von Tensidmolekülen Selbstorganisation Unterschiedlich in Gestalt und Größe (Gestalt, Ladungszustand und Konzentration des Tensids, Polarität und Elektrolytgehalt des Dispersionsmittels, Temperatur)

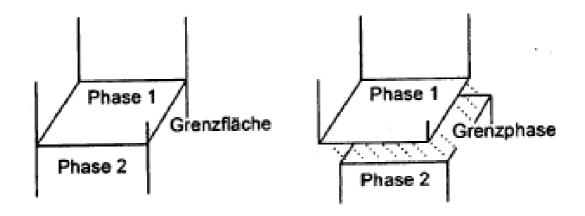
Einteilung kolloider Systeme

Tabelle 1.1. Zusammenhänge zwischen den verschiedenen Grenzflächenkombinationen auf der Grundlage der Aggregatzustände der beteiligten Phasen und die zugehörigen grenzflächen- und kolloidchemischen Erscheinungen.

Grenzflächen- kombination	Grenzflächenerscheinungen bzw. kolloidchemische Phänomene
Fest/gasformig	Adsorption und Chemisorption; heterogene Katalyse
Fest/flüssig	Feste Schäume, feste Aerosole
	Bildung von Dispersionskolloiden
	Ausbildung von Randwinkeln und Benetzungsgleichgewichten
	Dreiphasenkontakt Teilchen/Blase bei Flotationsprozessen
	Suspensionen und feste Emulsionen
	Elektrosorption und Elektrokristallisation
	Elektrokinetische Erscheinungen
	Chromatographische Trennverfahren
	Waschprozesse
	Spreitung von Festkörpern auf Flüssigkeitsoberflächen zu Monoschichten
Fest/fest	Adhäsion und Kohäsion
	Reibung und Schmierung
	Aufbau polymolekularer Schichten (Langmuir-Blodgett-Schichten)
	Bildung von festen Solen und kolloiddisperser Metallegierungen
Flüssig/	Oberflächenspannung von Flüssigkeiten
gasförmig	Bildung von Schäumen
	Entstehung von Blasen und Flüssigkeitstropfen
	Mono- und Adsorptionsschichten auf wäßrigen Substraten
	Entstehung von Aerosolen
Flüssig/flüssig	Bildung von Emulsionen
	Grenzflächenspannung zwischen nichtmischbaren Flüssigkeiten
	Bildung von Makro- und Mikroemulsionen sowie von Mizellen
	Solubilisierung in Mizellen

Grenzfläche und Grenzphase

Die Berührungsfläche zweier nicht mischbarer Phasen wird als Grenzfläche bezeichnet. Der Typ der Grenzflächen ergibt sich aus der Kombination der Aggregatzustände (fest, flüssig, gasförmig) der angrenzenden Phasen. Der Begriff der Oberfläche als Spezialfall der Grenzschicht kann nur auf die Kombinationen:

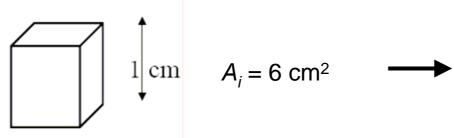

Festkörper bzw. Flüssigkeit // Vakuum bzw. Gas

Festkörper // Flüssigkeit

Angewendet werden. Die thermodynamische Beschreibung der Grenzfläche und ihren Erscheinungen geht auf W. Gibbs zurück.

Grenzfläche bzw. Grenzflächenphase

Ausdehnung, Begrenzung und Dimension der Grenzphase kann nicht immer genau angegeben werden. Die dreidimensional Grenzphase wird im Modell oft als zweidimensionale Grenzfläche beschrieben.


Spezifische Grenzfläche

Die spezifische Grenzfläche A_s ist als Verhältnis von Grenzfläche A_i zu Volumen V_i eines Körpers definiert:

$$A_s = V_i / A_i$$

$$[A_s] = m^{-1}$$

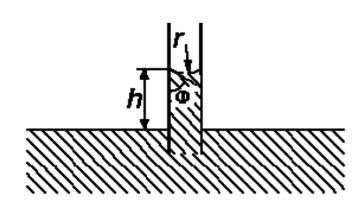
Beispiel:

$$A_i = 6 \text{ cm}^2$$

$$A_s = 6 \text{ cm}^{-1}$$

$$A_i = 60 \text{ cm}^2$$
 $A_s = 60 \text{ cm}^{-1}$

$$A_i = 6.10^8 \text{ cm}^2$$
 $A_s = 6.10^8 \text{ cm}^{-1}$



Grenzflächen- und Kolloidchemie

... ein kurzer historischer Abriss ...

Aufsteigen von Flüssigkeiten in Kapillaren

Grenzflächenchemie SS 2006 Dr. R. Tuckermann

$$h = \frac{2\sigma}{r\rho g}$$

h Steighöhe

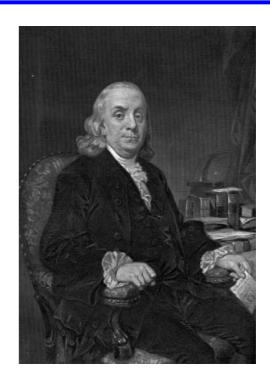
 σ Oberflächenspannung

r Kapillarradius

ρ Dichte

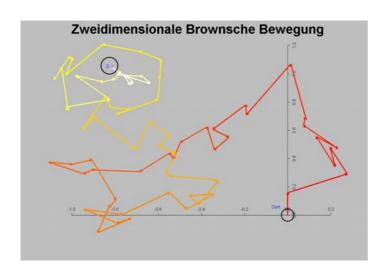
g Erdbeschleunigung

Leonardo da Vinci (1452-1519)


W. Harvey (1578-1667) Blutkreislauf

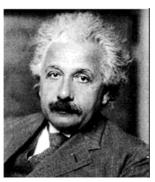
St. Hales (1677-1761) Nährstofftransport in Pflanzen

Plinius (24-79) und **Plutarch** (46-120): "beruhigende" Wirkung von Ölen auf Wasserwellen



B. Franklin (1706-1790):

Durch eine Teelöffel Öl beruhigte Franklin die durch Wind gekräuselte Wasseroberfläche von einem kleinen Teich von 0,2 ha. Er schloss daraufhin auf eine Dicke des Ölfilms von 2,5 nm (monomolekularer Film).



Eigenschaften von Dispersionen

Robert Brown (1773-1858)

Albert Einstein (1879-1955) Theoretische Deutung

M. v. Smoluchowski (1872-1917) Theoretische Deutung 1906

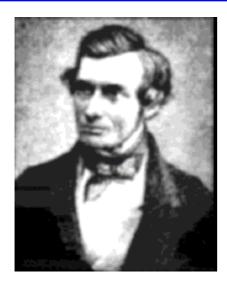
Tanzen von Champer auf Wasser

J. W. Rayleigh (1842-1919)

Unterbindung des Effekts durch Spreitung von Ölsäure und Bildung eines monomolekularen Films

Grenzflächenspannung

Agnes Pockels (1862-1935)

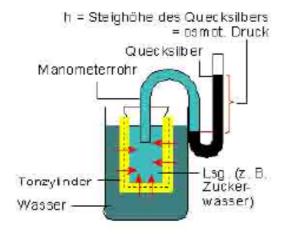

Laura-R.-Lenardo-Preis der Kolloidgesellschaft (1931)

Ehrendoktor der TH Braunschweig (1932)

- Adhäsion von Flüssigkeiten an Glas
- Randwinkel gesättigter Lösungen an Kristallen
- Grenzflächenspannungen von Makroemulsionen bzw. tensidlösungen
- Entwicklung der Filmwaage / Langmuir-Tröge

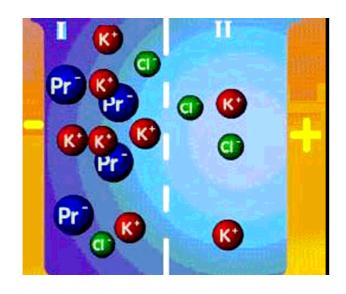
Entdeckung der Kolloide

Thomas Graham (1805-1869)


erster Präsident der "Chemical Society of London"

Einführung des Begriffs "Kolloid"

- Grenzflächenerscheinungen (Adsorption und Diffusion von Gasen durch Flüssigkeiten)
- Permeationsverhalten von kolloiden Teilchen an porösen Tonmineralien und tierischen Membranen (Dialyse)
- Entdeckung des Gelzustandes bei der Auflösung von Na-Silikaten mit Salzsäure



Entdeckung der Osmose

W. Pfeffer (1845-1920) Pfeffersche Zelle, semipermeable Membranen

F. G. Donnan (1870-1956) permselektive (geladene) Membranen, Donnan-

Potential

Faraday-Tyndall-Effekt

J. Tyndall (1820-1893) Streuung des Lichts an kolloiden Dispersionen

M. Faraday (1791-1863)

Streuung des Lichts an kolloiden Dispersionen

Nachweis kolloider Teilchen

R. Zsigmondy (1865-1929)

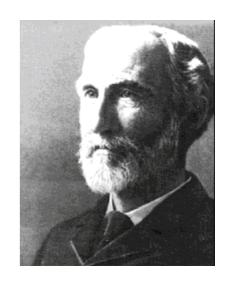
Entwicklung eines Ultramikroskops, Entdeckung kolloider Teilchen

Goldhydrosollösungen unterschiedlicher Konzentration

H. Siedentopf (1872-1940)

Entwicklung eines Ultramikroskops, Entdeckung kolloider Teilchen

Thermodynamische Grundlagen

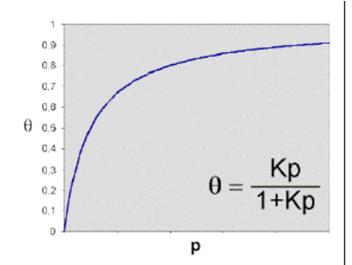

$$du^{\sigma} = Tds^{\sigma} - pdv^{\sigma} + \sigma dA + \sum_{i}^{k} \mu_{i} dn_{i}^{\sigma}$$

$$dh^{\sigma} = Tds^{\sigma} + \upsilon^{\sigma}dp - Ad\sigma + \sum_{i}^{k} \mu_{i}dn_{i}^{\sigma}$$

$$df^{\sigma} = -s^{\sigma}dT - pdv^{\sigma} + \sigma dA + \sum_{i}^{k} \mu_{i} dn_{i}^{\sigma}$$

$$dg^{\sigma} = -s^{\sigma}dT + v^{\sigma}dp + Ad\sigma + \sum_{i}^{k} \mu_{i}dn_{i}^{\sigma}$$

Gibbssche Fundamentalgleichungen



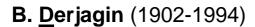
Josiah Willard Gibbs (1835-1903)

Thermodynamik,
Oberflächenspannung Phasenregel

Adsorption von Gasen an Festkörpern

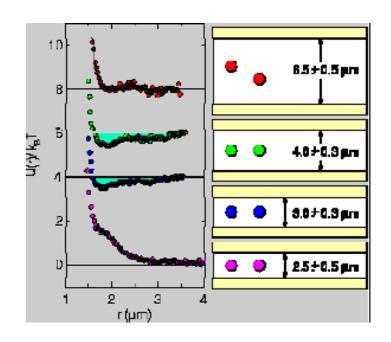
Langmuir Isotherme

Irving Langmuir (1881-1957)


Nobelpreis (1932)

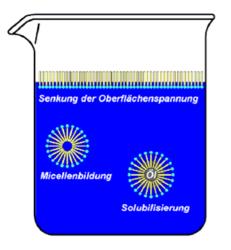
Adsorption monomolekularer Schichten, Adsorptionsisotherme, Oberflächenspannung, Langmuir Waage, heterogene Katalyse

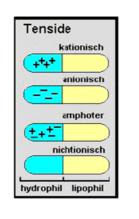
Stabilität geladener kolloiddisperser Systeme



L. <u>L</u>andau (1908-1968)

E. <u>Verwey</u> (1905-1981)


J. Overbek (1911-)



DLVO-Theorie

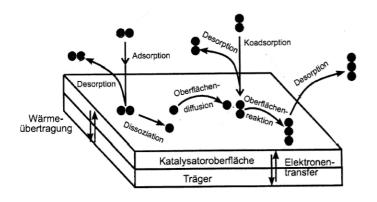
Tensidchemie und Flüssigkeitskristalle

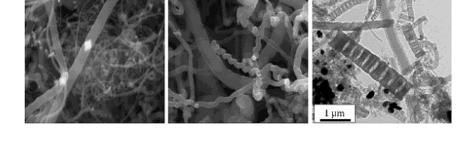
Grenzflächeaktive Substanzen, Tenside

Pioniere der Tensidchemie: McBain ()

P. Ekwall (1895-1990)

A. Lottermoser (1870-1945)

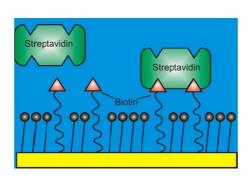

Neu atische Phase Su ektische Phase Phase Phase Phase


Phasen von Flüssigkeitskristallen

Pionierarbeiten zu Flüssigkeitskristalle:

- **O. Lehmann** (18-19)
- **F. Reinitzer** (18-19)
- **D. Vorländer** (18-19)

Nanowissenschaften

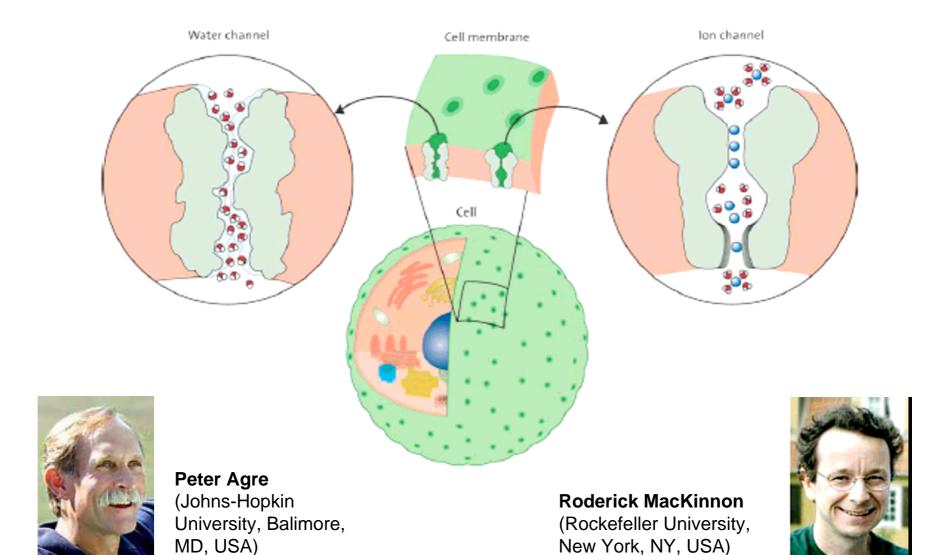


heterogene Katalyse

nanostrukturierte Materialien

Flüssigkeitskristalle

funktionalisierte Oberflächen


Supraleitung

Wasser- und Ionenkanäle in Membranen – Nobelpreis Chemie (2003)

Grenzflächenchemie SS 2006

Dr. R. Tuckermann

Fragestellungen

- Beschreibung und Analyse von Grenzflächenerscheinungen: Adsorption, Physisorbtion, Chemisorption, Benetzung, Spreitung, Monolayer
- Eigenschaften von Tensiden in Grenzflächen- und Volumensystemen
- Mizellen und Mikroemulsionen: Selbstorganisation amphphiler Moleküle, lyotrope und thermotrope Mesophasen (Flüssigkeitkristalle)
- Bildungsmechanismen und Stofftransport durch Membranen
- Beschreibung kolloidaler Systeme: Dispersionkolloide, Molekülkolloide, Mizellen- bzw. Assoziationskolloide, Partikelwechselwirkungen, Stabilität, Koagulation, Diffusion, Sedimentation

• ...

Anwendungen

- Herstellung von Waschmitteln
- Herstellung von Gelen (Salben, Ton)
- Mikroemulsionen (Kosmetik, Duftstoffe, tertiäre Erdölförderung)
- Eigenschaften von Farbstoffen, Lacken, Klebstoffen
- Selektive Stofftrennprozesse (Aufbereitung von Erzen, Mineralien und Wertstoffen)
- Heterogene Katalysatoren
- Membrantrennprozesse (Biotechnologie, Abwasseraufbereitung)
- Funktionalisierte Oberflächen
- Nanostrukturierte Festkörper
- ...

Inhalte der Vorlesung

Grenzflächenthermodynamik (Grenzphase, Grenzflächenkonzentration, Spreitung, Young-Laplace-Gleichung, Adsorption)

Fluide Grenzflächen (Oberflächen- bzw. Grenzflächenspannung, Benetzung und Spreitung, Adsorption grenzflächenaktiver Substanzen, monomolekulare (Oberflächen-) Filme, Dynamik von fluiden Grenzflächen, Membranen, Stofftransport)

Tenside (Aufbau, Eigenschaften, Waschprozess, Schaumbildung, Stabilisierung von Emulsionen)

Kolloide (Dispersionskolloide, Diffusion, Sedimentation, Lichtstreuung, Mizellenkolloide, Flüssigkeitskristalle, DLVO-Theorie, Gele)

Festkörpergrenzflächen (Eigenschaften und Charakterisierung, Physi- und Chemisorption, Adsorptionsisotherme, Desorption und Beweglichkeit auf Festkörperoberflächen, katalytische Eigenschaften von Oberflächen)

Semesterplan

25. April 2006	Einführung in die Grenzflächen- und Kolloidchemie
	Semesterplan, Literatur, Scheinkriterien, Leitlinien für Hausarbeiten,
	Demonstrationsversuche, Themenvergabe
02. Mai 2006	Grenzflächenthermodynamik
09. Mai 2006	Fluide Grenzflächen
16. Mai 2006	Fluide Grenzflächen
23. Mai 2006	Tenside
30. Mai 2006	Kolloide
06. Juni 2006	"Exkursionswoche"
13. Juni 2006	Kolloide
20. Juni 2006	Festkörpergrenzflächen
27. Juni 2006	Festkörpergrenzflächen
	Abgabe der Hausarbeiten
04. Juli 2006	
11. Juli 2006	
18. Juli 2006	
25. Juli 2006	Demonstrationsversuche zur Grenzflächen- und Kolloidchemie

- H. D. Dörfler (2002 Grenzflächen und kolloid-disperse Systeme. Springer Verlag
- M. J. Schwuger (1996) *Lehrbuch der Grenzflächenchemie.* Georg-Thieme Verlag

Scheinkriterien

1. regelmäßige Teilnahme (max. 2 Fehltermine)

2. Hausarbeit

- (i) Grundlagen, Bedeutung, Theorie und Anwendung
- (ii) einfache Demonstrationsversuche (max. 3)
- **3.** Vorbereitung und Vorführung eines Demonstrationsversuches (??)

Referatsthemen

- 1. (Mikro-)Emulsionen
- 2. Flüssigkeitskristalle
- 3. Benetzung, Kontaktwinkel und Spreitung
- 4. Oberflächenspannung
- 5. Tenside und Mizellen
- 6. Waschmittel und Waschprozess
- 7. Monomolekulare Filme
- 8. Kolloide
- 9. Gele
- 10. Prozesse der Lichtstreuung an kolloiden Systemen
- 11. Membranen und Osmose
- 12. Adsorption an Festkörperoberflächen

Hinweise zum Verfassen einer Hausarbeit

Grenzflächenchemie SS 2006

Dr. R. Tuckermann

Hinweise zum Verfassen der Seminararbeit

Der Umfang der Seminararbeit sollte 10-20 Seiten betragen. Der Wahl des Themas sollte eine intensive Literatur- und Internetrecherche (Die bereitgestellte Literatur kann nur einen ersten Einstieg bedeuten!) und Auseinandersetzung mit dem Thema folgen. Damit sollte auch eine sinnvolle Abgrenzung des Themas zu anderen und eine Präzisierung der Fragestellung einhergehen.

Seitenlayout Ränder oben/unten/links 2,5 cm rechts 2.0 cm

> Seitenzahlen fortlaufend

Schriftart z. B. Arial, TimesNewRoman

Schriftgröße Haupttext 12 und 11/2-zeilig

(Blocksatz) Hauptüberschriften 14 und fett Unterüberschriften 12 und fett (Nach Überschriften eine Leerzeile lassen!) Abbildungsunterschriften 11 und 1-zeilig

Tabellenüberschriften

Fußnoten 10 und 1-zeilig

Aufbau der Arbeit Deckblatt, Gliederung, evt. Abbildungsverzeichnis, evt.

Tabellenverzeichnis, evt. Abkürzungsverzeichnis, Hauttext, Literatur-

und Quellenverzeichnis, evt. Anlagen

Deckblatt Name der Institution

Fachbereich Fach Thema Autor

Bezeichnung der Arbeit Lehrveranstaltung Seminarleiter

Name, Matrikelnummer,

evt. Anschrift

Gliederung maximal 3-4 hierarchische Abstufungen (Überpunkte müssen

mindestens in zwei Unterpunkte unterteilt werden.)

Seitenangaben

Text Innerhalb einer wissenschaftlichen Arbeit besteht zwar eine enge

Anbindung zwischen Inhalt und Struktur (siehe Gliederung, Seitenlavout etc.), sollte aber nicht zu einer Vernachlässigung eines

eigenständigen, kreativen Stils führen.

Innerhalb des formalen Aufbaus des Textes wird zwischen Einleitung (Einführung in das Thema, kurze prägnante Themenformulierung, Abgrenzung des Themas), Hauptteil (thematische gegliederte, inhaltliche Bearbeitung der Themenstellung) und Schlussteil/Resümee

(Zusammenfassung der Ergebnisse, Bewertung, evt. Ausblick)

unterschieden.

(Ich-, Wir- und Man-Formen im Deutschen vermeiden!)

Zitate/Ouellen

Unmittelbarkeit (Zitat/Ouelle stets aus Primärquelle beziehen!)

Genauigkeit Zweckmäßigkeit

Im Haupttext (einschließlich Abbildungen, Tabellen, Fußnoten) sind

Zitate mit Kurzbeleg zu versehen:

[1], [2], ... oder [Meier 2000], [Schultze 2003],

Literatur- und Quellenverzeichnis

chronologisch oder alphabetisch geordnet

Buch: Verfasser (Herausgeber), Titel, Auflage, Verlag, Erscheinungsort, Erscheinungsjahr, evt. Seitenzahlen

(z. B.: M. Meier, Verfassen einer Seminararbeit, Springer-Verlag,

Heidelberg, 2000)

Artikel: Verfasser, Titel, Zeitschrift, Jahrgang (Jahr), Seitenzahlen (z. B.: M. Meier, Verfassen einer Seminararbeit, Physik Journal 4 (2000), 434-438)

Internet: Verfasser, Titel, Internetadresse (vollständig!), Datum der

Einsicht

(z. B.: M. Meier, Verfassen einer Seminararbeit,

http://www.quatsch.de/seminararbeit.pdf, 15. April 2005)