next up previous
Next: Über dieses Dokument ... Up: No Title Previous: Brechen chemischer Bindungen

Literatur

1
M. BORN.
Kopplung der Elektronen- und Kernbewegung in Molekeln und Kristallen.
Nachr. Akad. Wiss. Gött., Math.-Phys.-Kl. 6 (1951), 1-3.

2
M. BORN, AND K. HUANG.
Dynamical theory of crystal lattices.
Oxford University Press, New York, 1954.

3
N. C. HANDY, Y. YAMAGUCHI, AND H. F. SCHAEFER III.
The diagonal correction to the Born-Oppenheimer approximation: Its effect on the singlet-triplet splitting of CH2 and other molecular effects.
J. Chem. Phys. 84 (1986), 4481-4484.

4
R. J. GDANITZ.
Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (12-)MR-CI: The ground state potential energy curve of N2.
Chem. Phys. Lett. 283 (1998), 253-261.
288 (1998), E590-592; 295 (1998) E540.

5
K. P. HUBER, AND G. HERZBERG.
Constants of diatomic molecules.
Van Nostrand Reinhold, New York, 1979.

6
M. BORN, AND J. R. OPPENHEIMER.
Zur Quantentheorie der Molekeln.
Ann. Phys. (Leipzig) 84 (1927), 457-484.

7
P. R. BUNKER, AND R. E. MOSS.
The breakdown of the Born-Oppenheimer approximation: the effective vibration-rotation hamiltonian for a diatomic molecule.
Mol. Phys. 33 (1977), 417-424.

8
P. R. BUNKER, C. J. MCLARNON, AND R. E. MOSS.
Application of the effective vibration-rotation hamiltonian to H2 and D2.
Mol. Phys. 33 (1977), 425-429.

9
W. KUTZELNIGG.
Die adiabatische Näherung.
Arbeitstagung Mariapfarr, Austria.
1997.

10
B. T. SUTCLIFFE.
The idea of a potential energy surface.
Lecture Notes in Chemistry. 1998.
In press.

11
H.-J. KOWALSKY, AND G. O. MICHLER.
Lineare Algebra, 11 ed.
Walter de Gruyter, 1998.

12
T. KOOPMANS.
Physica 1 (1934), 104.

13
A. SZABO, AND N. S. OSTLUND.
Modern quantum chemistry: Introduction to advanced electronic structure theory.
MacMillan Publishing Co., New York, 1982.

14
C. C. J. ROOTHAAN.
Self-consistent field theory for open shells of electronic systems.
Rev. Mod. Phys. 32 (1960), 179-185.

15
R. SHEPARD.
The multiconfiguration selfconsistent field method.
In Ab initio methods in quantum chemistry, K. P. Lawley, Ed. John Wiley & Sons, 1987, pp. 63-200.

16
L. BRILLOUIN.
Les champs ``self-consistents'' de Hartree et de Fock.
Hermann, Paris, 1934, p. 19.

17
R. J. GDANITZ, AND R. AHLRICHS.
The Averaged Coupled-Pair Functional (ACPF): A size-extensive modification of MR-CI(SD).
Chem. Phys. Lett. 143 (1988), 413-420.

18
J. CÍZEK.
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods.
J. Chem. Phys. 45 (1966), 4256-4266.

19
F. COESTER.
Bound states of a many-particle system.
Nucl. Phys. 7 (1958), 421-424.

20
F. COESTER, AND H. K¨UMMEL.
Short range correlations in nuclear wave functions.
Nucl. Phys. 17 (1960), 477-485.

21
H. K¨UMMEL.
Compound pair states in imperfect Fermi gases.
Nucl. Phys. 22 (1961), 177-183.

22
W. KUTZELNIGG.
Pair correlation theories.
In Methods of electronic structure theory, Henry F. Schaefer III, Ed. Plenum Press, New York and London, 1977, ch. 5, pp. 129-188.

23
J. NOGA, AND R. BARTLETT.
The full CCSDT model for molecular electronic structure.
J. Chem. Phys. 86 (1987), 7041-7050.

24
J. NOGA, AND R. BARTLETT.
The full CCSDT model for molecular electronic structure. Erratum: [J. Chem. Phys. 86, 7041, (1987)].
J. Chem. Phys. 89 (1988), 3401.

25
Y. S. LEE, S. A. KUCHARSKI, AND R. J. BARTLETT.
A coupled-cluster approach with triple excitations.
J. Chem. Phys. 81 (1984), 5906-5912.

26
M. URBAN, J. NOGA, S. J. COLE, AND R. J. BARTLETT.
Towards a full CCSDT model for electron correlation.
J. Chem. Phys. 83 (1985), 4041-4046.

27
K. RAGHAVACHARI, G. W. TRUCKS, J. A. POPLE, AND M. HEAD-GORDON.
A fifth-order perturbation comparison of electron correlation theories.
Chem. Phys. Lett. 157 (1989), 479.

28
B. JEZIORSKI, AND H. J. MONKHORST.
Coupled-cluster method for multideterminantal reference states.
Phys. Rev. A 24 (1981), 1668-1681.



Robert Gdanitz
1999-07-05

Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.