Dooh | E | 2Coo | ... | oo![]() |
i | 2Soo | ... | ooC'2 | Rotation |
Fkt. |
|
---|---|---|---|---|---|---|---|---|---|---|---|
A1g=![]() |
+1 | +1 | ... | +1 | +1 | +1 | ... | +1 | - | x2+y2, z2 | - |
A2g=![]() |
+1 | +1 | ... | -1 | +1 | +1 | ... | -1 | Rz | - | - |
E1g=![]() |
+2 | +2cos(![]() |
... | 0 | +2 | -2cos(![]() |
... | 0 | (Rx, Ry) | (xz, yz) | - |
E2g=![]() |
+2 | +2cos(2![]() |
... | 0 | +2 | +2cos(2![]() |
... | 0 | - | (x2-y2, xy) | - |
E3g=![]() |
+2 | +2cos(3![]() |
... | 0 | +2 | -2cos(3![]() |
... | 0 | - | - | - |
Eng | +2 | +2cos(n![]() |
... | 0 | +2 | (-1)n2cos(n![]() |
... | 0 | - | - | - |
... | ... | ... | ... | ... | ... | ... | ... | ... | - | - | - |
A1u=![]() |
+1 | +1 | ... | +1 | -1 | -1 | ... | -1 | z | - | z3, z(x2+y2) |
A2u=![]() |
+1 | +1 | ... | -1 | -1 | -1 | ... | +1 | - | - | - |
E1u=![]() |
+2 | +2cos(![]() |
... | 0 | -2 | +2cos(![]() |
... | 0 | (x, y) | - | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
E2u=![]() |
+2 | +2cos(2![]() |
... | 0 | -2 | -2cos(2![]() |
... | 0 | - | - | [xyz, z(x2-y2)] |
E3u=![]() |
+2 | +2cos(3![]() |
... | 0 | -2 | 2cos(3![]() |
... | 0 | - | - | [y(3x2-y2), x(x2-3y2)] |
Enu | +2 | +2cos(n![]() |
... | 0 | -2 | (-1)n+12cos(n![]() |
... | 0 | - | - | - |
... | ... | ... | ... | ... | ... | ... | ... | ... | - | - | - |
Dooh
H2
Anzahl der Symmetrieelemente | h = oo |
Anzahl der irreduziblen Darstellungen | h = oo |
abelsche Gruppe ? | nein |
chiral ? | nein |
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.