Planck Black Body Irradiation Equation Derivation

An oscillator has energy <E> = kT with the mean temperature T. The energy emission density, u(ν)dν, multiplied by frequency range [ν, ν+dν] is proportional to the oscillator amount in a volume unit in this region, dN(ν), multiplied by kT and it is as follows:

u(ν)dν  = <E> dN(ν)  =  kT dN(ν)

u(ν)dν  =  Emission energy in range [ν,ν+dn]/Volume 

dN(ν) was calculated by Rayleigh and Jeans:  dN(ν) = 8pn²/
 

 u(ν)  =  8pn²/ kT The Rayleigh-Jeans law is confirmed

by experiments in IR  region !

1900 Max Planck  draw a conclusion that energy doesn't emit continuously but by small fractions (energy quanta). The probability that normal vibration has energy  nhν is as follows (Boltzmann distribution):

Wn = e-nhν/kT/Q

The quantity Q (state sum) is for probability normalization on 1:

S¥n=0 Wn  =  1/Q S¥n=0 (e−hν/kT)n  =  1/Q .1/1 − e−hν/kT  =  1

where the sum gives geometrical series. We obtain:

1/Q  =  1 − e−hν/kT

The mean energy <E> is as follows

<E>  = Σ Wn nhν  =  (1 − e−hν/kT) Σ nhν e−nhν/kT  =   (1 − e−hν/kT) Σ-d/d(1/kT) e-nhν/kT  =

 - (1 - e−hν/kT) d/d(1/kT)Σ e−nhν/kT  =  − (1 − e−hν/kT) d/d(1(kT) 1/1 − e−hν/kT = hν e−hν/kT/(1 − e−hν/kT)

<E>  = /e+hν/kT− 1

We haven't yet obtained the degrees of freedom which can be obtained after the Rayleigh-Jeans law: U(ν) dν = <E> dN = 8pn²/<E> dν

One can easily obtain the spectral energy density u(ν)dν = <E> · dN(ν) in the frequency range [ν, ν+dν]:
 

<E> dN
u(ν)dν  = 
/e+hν/kT− 1
8pn²/c³

And finally we can write down the Planck emission formula:

u(ν)  =  hν³/.1/ehν/kT− 1

that is completely coincide with an experiment. 
 

Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.