The Rotational Eigenfunction

The squared kinetic moment operator = Lx² + Ly² + Lz² can be written in the following way in polar coordinates:

 

= - h²/sinJ/¶J(sinJ/¶J) + 1/sin²JLz²

And here are components Lx, Ly, Lz in polar coordinates:

Lx  =  −h/i{sinj/¶J + cotJ cosj/¶j}

Ly  =  h/i{cosj/¶J-cotJsinj/¶j}

Lz  =  h/i{/¶j}

  And now we are going to find eigenfunctions of:

L² Yl,m  =  l (l + 1)h² Yl,m

Lz Yl,m  =  m h Yl,m

The eigenfunction of kinetic moment z-component:

Lz Yl,m(J,j)  =  h/iYl,m(J,j)/¶j  =  m h Yl,m(J,j)

we can divide variables:

Yl,m(J,j)  = P(J) · φ(j)
function of J ­  ­ function of j

The solution φ(j)  =  C eimj can be readily checked by substituting h/i¶f/¶j = mh φ  to the ODE. The normalization gives us the C value:

C : normalization constant { oòC e-imj C eimj  =  1 
oò C² dj = 1 →  C = 1/(2π)½

Since j changes from 0 to 2π we will have because of the unambiguity:

Yl,m(J,j)  =  Yl,m(J,j+2π)  Þ  f(j) = φ(j +2π):

C eimj  =  C eim(j+2p)

This is true only for integer m values:

m  =  0, ±1, ±2, ... ±l
f(j)  =  1/(2π)½ eimj

The component Lz can not be higher than kinetic moment L. This is why the maximum possible value is m = ±l.
The kinetic moment can have 2l+1 possible projections relative to corresponding axis. Since the rotational energy doesn't have a term with quantum number l but instead m the energy levels are (2l+1)-fold degenerate.

The function doesn't have J - dependence also. For m = 0 they are called the Legendre Polynomials; for m ¹ 0 - the conjugated Legendre Polynomial (Plm (cosJ)). The total function Yl,m(J,j) is the Ball area function.

Applying our operators L+ ,L to the corresponding functions of  J one can easily calculate. Here we will write these two operators in polar coordinates:

L  = −h e−ij[/¶J- i cotJ/¶j]

L+  =  h eij[/¶J + i cotJ /¶j]

From the condition LYl,m = 0 we obtain for mmin = −l of the ball area function Yl,-l :

LYl,-l = −h e−ij[/¶J- i cotJ/¶j]Pl,-l e-ilj/(2π)½  =   −h/(2π)½ e−ij e−ilj[/¶J- l cotJ]Pl,-l  =  0

∂P(J)/¶J   =  l · cotJ· P(J)

Solution:  Pl,-l(J)  =  C · (sinJ)l

C is the normalization constant again.

If now we apply L+ consequently to Yl,m ,

L+Yl,m  =  ei(m+1)j [/¶J- m cotJ] Pl,m

ei(m+1)j  ºfm+1

then it's possible to construct the kinetic moment eigenfunctions Pl,−l+1, Pl,−l+2, ... Pl,l. We can obtain the normalization constants by integration of corresponding volumes dΩ:
 

oò oòp |Yl,m|² sinJ dJ dj   =  1
j ­ J ­ |¾¾¯¾¾|
       dΩ

The results are summarized in the chapter the rotation and kinetic moment² and the corresponding normalized ball area functions are represented for l = 0, 1, 2, 3, 4 there.

Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.