next up previous contents
Next: Normal Vibrational Modes Up: Symmetry of Molecular Vibrations Previous: Symmetry of Molecular Vibrations   Contents

The Vibrational Hamiltonian

The classical expression for the vibrational energy, using molecular-fixed $x, y, z$ coordinates ( $u_1, u_2, ... u_{3N}$) = ( $\Delta x_i, \Delta y_i, ... \Delta z_N$) is
$\displaystyle E_{vib} = \frac{1}{2}\sum_{i=1}^{3N}m_i \dot{u}_i^2 + V_N(u_i),$     (2)

where $V_N(u_i)$ is the potential energy which is zero at the equilibrium together with its first derivative. The Taylor's series expansion about the equilibrium is
$\displaystyle V_N = \frac{1}{2}\sum_{i,j=1}^{3N} k_{ij}u_iu_j +\frac{1}{6}
\sum...
...u_iu_ju_k + \frac{1}{24}
\sum_{i,j,k,l=1}^{3N}k_{i,j,k,l}u_iu_ju_ku_l + \cdots,$     (3)

where $k_{ij}, k_{i,j,k}$ and $k_{i,j,k,l}$ are force constants.

The lowest order terms in the expansion are quadratic and for small displacement only these terms can be preserved in eq. (3), while all other terms can be neglected. Corresponding expression for the potential $V_N^0$ is called the harmonic-oscillator approximation. In the harmonic-oscillator approximation the vibrational energy can be written as

$\displaystyle E_{vib}^0 = \frac{1}{2}\sum_{i=1}^{3N} m_{i}\dot{u}_i^2 +\frac{1}{2}
\sum_{i,j=1}^{3N}k_{i,j}u_iu_j,$     (4)

where $k_{i,j}$ are harmonic force constants.


next up previous contents
Next: Normal Vibrational Modes Up: Symmetry of Molecular Vibrations Previous: Symmetry of Molecular Vibrations   Contents
Markus Hiereth 2005-02-09

Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.