| S10 | E | C5 | (C5)2 | (C5)3 | (C5)4 | i | (S10)7 | (S10)9 | S10 | (S10)3 | Rotation |
Fkt. |
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ag | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | Rz | z2, x2+y2 | - |
| E1g | +1 +1 |
+ + | + + | + + | + + |
+1 +1 |
+ + |
+ + |
+ + |
+ + |
Rx+iRy Rx-iRy |
(xz, yz) | - |
| E2g | +1 +1 |
+ + | + + | + + | + + |
+1 +1 |
+ + |
+ + |
+ + |
+ + |
- | (x2-y2, xy) | - |
| Au | +1 | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 | -1 | z | - | z3, z(x2+y2) |
| E1u | +1 +1 |
+ + | + + | + + | + + |
-1 -1 |
- - |
- - |
- - |
- - |
x+iy x-iy |
- | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
| E2u | +1 +1 |
+ + | + + | + + | + + |
-1 -1 |
- - |
- - |
- - |
- - |
- | - | [xyz, z(x2-y2)] [y(3x2-y2), x(x2-3y2)] |
| Anzahl der Symmetrieelemente | h = 10 |
| Anzahl der irreduziblen Darstellungen | n = 10 |
| Anzahl der reellen irreduziblen Darstellungen | n = 6 |
| abelsche Gruppe ? | ja |
| Untergruppen | Ci , C5 |
|---|---|
| chiral ? | nein |
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.