
E = ½ IAωA2 +½ IBωB2+ ½ ICωC2
with Ji = Ii ⋅ ωi (J = angular momentum) we obtain:
E = JA2/(2IA) + JB2/(2IB) + JC2/(2IC)
Some formulas to calculate moment of inertia are found here. 
To begin, we assume the shape of the molecule to not be dependent on the 
rotation, i.e. the length of bonds arenot affected by centrifugal 
forces. The molecule is thus regarded as rigid rotor in contrast to an elastic 
rotor. We have to deal with the following cases 
  
| Spherical top | IA = IB = IC = I | e.g. CH4, CCl4, SF6 | 
| Symmetric top | IA = IB = I⊥ and IC = 
      I|| I||>I⊥ oblate I||<I⊥ prolate | e.g. Benzene CH3I | 
| Linear 
      rotor (a special case of symmetric top) | IA = 0, IB = IC | all diatomic molecules, e.g. NO, C2N2, CO2 | 
| Asymmetric top | IA ≠ IB ≠ IC,    
      IA ≠ IC IA < IB < IC | e.g. H2O | 
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.