C4h | E | C4(z) | C2 | (C4)3 | i | (S4)3 | ![]() |
S4 | Rotation |
Fkt. |
|
---|---|---|---|---|---|---|---|---|---|---|---|
Ag | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | Rz | x2+y2, z2 | - |
Bg | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | - | x2-y2, xy | - |
Eg | +1 +1 |
+i -i |
-1 -1 |
-i +i |
+1 +1 |
+i -i |
-1 -1 |
-i +i |
Rx+iRy Rx-iRy |
(xz, yz) | - |
Au | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 | z | - | z3, z(x2+y2) |
Bu | +1 | -1 | +1 | -1 | -1 | +1 | -1 | +1 | - | - | xyz, z(x2-y2) |
Eu | +1 +1 |
+i -i |
-1 -1 |
-i +i |
-1 -1 |
-i +i |
+1 +1 |
+i -i |
x+iy x-iy |
- | (xz2, yz2) (xy2, x2y) (x3, y3) |
Anzahl der Symmetrieelemente | h = 8 |
Anzahl der irreduziblen Darstellungen | n = 8 |
Anzahl der reellen irreduziblen Darstellungen | n = 6 |
abelsche Gruppe ? | ja |
Untergruppen | Cs , Ci , C2 , C4 , C2h , S4 |
---|---|
chiral ? | nein |
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.