| D6d | E | 2S12 | 2C6 | 2S4 | 2C3 | 2(S12)5 | C2 | 6C'2 | 6 |
Rotation |
Fkt. |
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | - | x2+y2, z2 | - |
| A2 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | -1 | -1 | Rz | - | - |
| B1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | +1 | -1 | - | - | - |
| B2 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | z | - | z3, z(x2+y2) |
| E1 | +2 | +(3)½ | +1 | 0 | -1 | -(3)½ | -2 | 0 | 0 | (x, y) | - | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
| E2 | +2 | +1 | -1 | -2 | -1 | +1 | +2 | 0 | 0 | - | (x2-y2, xy) | - |
| E3 | +2 | 0 | -2 | 0 | +2 | 0 | -2 | 0 | 0 | - | - | [y(3x2-y2), x(x2-3y2)] |
| E4 | +2 | -1 | -1 | +2 | -1 | -1 | +2 | 0 | 0 | - | - | [xyz, z(x2-y2)] |
| E5 | +2 | -(3)½ | +1 | 0 | -1 | +(3)½ | -2 | 0 | 0 | (Rx, Ry) | (xz, yz) | - |
D6d

Cr(C6H6)2
| Anzahl der Symmetrieelemente | h = 24 |
| Anzahl der irreduziblen Darstellungen | n = 9 |
| abelsche Gruppe ? | nein |
| Untergruppen | Cs , C2 , C3 , C6 , D2 , D3 , D6 , C2v , C3v , C6v , S4 , S12 |
|---|---|
| chiral ? | nein |
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.