D7h | E | 2C7 | 2(C7)2 | 2(C7)3 | 7C'2 | ![]() |
2S7 | 2(S7)5 | 2(S7)3 | 7![]() |
lineare Fkt., Rotation |
||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A'1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | - | x2+y2, z2 | - |
A'2 | +1 | +1 | +1 | +1 | -1 | +1 | +1 | +1 | +1 | -1 | Rz | - | - |
E'1 | +2 | +2cos(2![]() |
+2cos(4![]() |
+2cos(6![]() |
0 | +2 | +2cos(2![]() |
+2cos(4![]() |
+2cos(6![]() |
0 | (x, y) | - | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
E'2 | +2 | +2cos(4![]() |
+2cos(6![]() |
+2cos(2![]() |
0 | +2 | +2cos(4![]() |
+2cos(6![]() |
+2cos(2![]() |
0 | - | (x2-y2, xy) | - |
E'3 | +2 | +2cos(6![]() |
+2cos(2![]() |
+2cos(4![]() |
0 | +2 | +2cos(6![]() |
+2cos(2![]() |
+2cos(4![]() |
0 | - | - | [y(3x2-y2), x(x2-3y2)] |
A''1 | +1 | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 | -1 | - | - | - |
A''2 | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 | -1 | +1 | z | - | z3, z(x2+y2) |
E''1 | +2 | +2cos(2![]() |
+2cos(4![]() |
+2cos(6![]() |
0 | -2 | -2cos(2![]() |
-2cos(4![]() |
-2cos(6![]() |
0 | (Rx, Ry) | (xz, yz) | - |
E''2 | +2 | +2cos(4![]() |
+2cos(6![]() |
+2cos(2![]() |
0 | -2 | -2cos(4![]() |
-2cos(6![]() |
-2cos(2![]() |
0 | - | - | [xyz, z(x2-y2)] |
E''3 | +2 | +2cos(6![]() |
+2cos(2![]() |
+2cos(4![]() |
0 | -2 | -2cos(6![]() |
-2cos(2![]() |
-2cos(4![]() |
0 | - | - | - |
Anzahl der Symmetrieelemente | h = 28 |
Anzahl der irreduziblen Darstellungen | n = 10 |
abelsche Gruppe | nein |
Untergruppen | Cs , C2 , C7 , D7 , C2v , C7v , C7h |
---|---|
chiral ? | nein |
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.