C6h | E | C6(z) | C3 | C2 | (C3)2 | (C6)5 | i | (S3)5 | (S6)5 | ![]() |
S6 | S3 | Rotation |
Fkt. |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | Rz | x2+y2, z2 | - |
Bg | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | - | - | - |
E1g | +1 +1 |
+![]() + ![]() |
-![]() - ![]() |
-1 -1 |
-![]() - ![]() |
+![]() + ![]() |
+1 +1 |
+![]() + ![]() |
-![]() - ![]() |
-1 -1 |
-![]() - ![]() |
+![]() + ![]() |
Rx+iRy Rx-iRy |
(xz, yz) | - |
E2g | +1 +1 |
-![]() - ![]() |
-![]() - ![]() |
+1 +1 |
-![]() - ![]() |
-![]() - ![]() |
+1 +1 |
-![]() - ![]() |
-![]() - ![]() |
+1 +1 |
-![]() - ![]() |
-![]() - ![]() |
- | (x2-y2, xy) | - |
Au | +1 | +1 | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 | -1 | -1 | z | - | z3, z(x2+y2) |
Bu | +1 | -1 | +1 | -1 | +1 | -1 | -1 | +1 | -1 | +1 | -1 | +1 | - | - | y(3x2-y2), x(x2-3y2) |
E1u | +1 +1 |
+![]() + ![]() |
-![]() - ![]() |
-1 -1 |
-![]() - ![]() |
+![]() + ![]() |
-1 -1 |
-![]() - ![]() |
+![]() + ![]() |
+1 +1 |
+![]() + ![]() |
-![]() - ![]() |
x+iy x-iy |
- | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
E2u | +1 +1 |
-![]() - ![]() |
-![]() - ![]() |
+1 +1 |
-![]() - ![]() |
-![]() - ![]() |
-1 -1 |
+![]() + ![]() |
+![]() + ![]() |
-1 -1 |
+![]() + ![]() |
+![]() + ![]() |
- | - | [xyz, z(x2-y2)] |
Anzahl der Symmetrieelemente | h = 12 |
Anzahl der irreduziblen Darstellungen | n = 12 |
Anzahl der reellen irreduziblen Darstellungen | n = 8 |
abelsche Gruppe ? | ja |
Untergruppen | Cs , Ci , C2 , C3 , C6 , C2h , C3h , S6 |
---|---|
chiral ? | nein |
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.