C8v | E | 2C8 | 2C4 | 2(C8)3 | C2 | 4![]() |
4![]() |
Rotation |
Fkt. |
|
---|---|---|---|---|---|---|---|---|---|---|
A1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | z | x2+y2, z2 | z3, z(x2+y2) |
A2 | +1 | +1 | +1 | +1 | +1 | -1 | -1 | Rz | - | - |
B1 | +1 | -1 | +1 | -1 | +1 | +1 | -1 | - | - | - |
B2 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | - | - | - |
E1 | +2 | +(2)½ | 0 | -(2)½ | -2 | 0 | 0 | (x, y) (Rx, Ry) | (xz, yz) | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
E2 | +2 | 0 | -2 | 0 | +2 | 0 | 0 | - | (x2-y2, xy) | [xyz, z(x2-y2)] |
E3 | +2 | -(2)½ | 0 | +(2)½ | -2 | 0 | 0 | - | - | [y(3x2-y2), x(x2-3y2)] |
Anzahl der Symmetrieelemente | h = 16 |
Anzahl der irreduziblen Darstellungen | n = 7 |
abelsche Gruppe ? | nein |
Untergruppen | Cs , C2 , C4 , C8 , C2v , C4v |
---|---|
chiral ? | nein |
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.