| D8d | E | 2S16 | 2C8 | 2(S16)3 | 2C4 | 2(S16)5 | 2(C8)3 | 2(S16)7 | C2 | 8C'2 | 8 |
lineare Fkt., Rotation |
Fkt. |
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | - | x2+y2, z2 | - |
| A2 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 | -1 | -1 | Rz | - | - |
| B1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | +1 | -1 | - | - | - |
| B2 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | z | - | z3, z(x2+y2) |
| E1 | +2 | +2cos(1 |
+(2)½ | +2cos(3 |
0 | -2cos(3 |
-(2)½ | -2cos(1 |
-2 | 0 | 0 | (x, y) | - | (xz2, yz2) [x(x2+y2), y(x2+y2)] |
| E2 | +2 | +(2)½ | 0 | -(2)½ | -2 | -(2)½ | 0 | +(2)½ | +2 | 0 | 0 | - | (x2-y2, xy) | - |
| E3 | +2 | +2cos(3 |
-(2)½ | -2cos(1 |
0 | +2cos(1 |
+(2)½ | -2cos(3 |
-2 | 0 | 0 | - | - | [x(x2-3y2), y(3x2-y2)] |
| E4 | +2 | 0 | -2 | 0 | +2 | 0 | -2 | 0 | +2 | 0 | 0 | - | - | - |
| E5 | +2 | -2cos(3 |
-(2)½ | +2cos(1 |
0 | -2cos(1 |
+(2)½ | +2cos(3 |
-2 | 0 | 0 | - | - | - |
| E6 | +2 | -(2)½ | 0 | +(2)½ | -2 | +(2)½ | 0 | -(2)½ | +2 | 0 | 0 | - | - | [xyz, z(x2-y2)] |
| E7 | +2 | -2cos(1 |
+(2)½ | -2cos(3 |
0 | +2cos(3 |
-(2)½ | +2cos(1 |
-2 | 0 | 0 | (Rx, Ry) | (xz, yz) | - |
| Anzahl der Symmetrielemente | h = 32 |
| Anzahl der irreduziblen Darstellungen | n = 11 |
| abelsche Gruppe ? | nein |
| Untergruppen | Cs , C2 , C4 , C8 , D2 , D4 , D8 , C2v , C4v , C8v , S16 |
|---|---|
| chiral ? | nein |
Auf diesem Webangebot gilt die Datenschutzerklärung der TU Braunschweig mit Ausnahme der Abschnitte VI, VII und VIII.